## Difração



## A luz se propaga em linha reta



A luz se propaga em linha reta?


## Difração da Luz



## Difração



Cada ponto da frente de onda se comporta como se fosse uma fonte puntual que emite frentes de onda secundárias,

As frentes de onda secundárias interferem, produzindo interferências construtivas ou destrutivas, de acordo com a diferença de fase entre elas

## Difração de Fraunhofer- D>>a



A figura representa uma frente de onda plana atravessando uma fenda de abertura a, e no anteparo se observam regiões claras e escuras. No centro do anteparo $y=0$

## Difração de Fraunhofer - D>>a



Considerando $D \gg a$, o ângulo $\theta$ é o mesmo para os raios vizinhos, 1 e 2,2 e 3 , etc. e a diferença de caminho entre dois raios vizinhos é $\delta$


$$
a / 2
$$

## $\theta$

$\delta$
$\operatorname{sen} \theta=\frac{\delta}{a / 2}$
$\operatorname{sen} \theta \approx \frac{y}{D}$

## Difração de Fraunhofer- D>>a



Interferência entre le 2
$\mathrm{a} / 2$
$\delta=\frac{a}{2} \operatorname{sen} \theta$
$\operatorname{tg} \theta=\frac{y}{D}$

$$
\delta \cong \frac{a}{2} \operatorname{tg} \theta=\frac{a}{2} \operatorname{sen} \theta
$$



$$
\delta=\frac{a}{2} \operatorname{sen} \theta
$$

Interferencia destrutiva:

$$
\begin{aligned}
& \delta=\frac{a}{2} \operatorname{sen} \theta=\frac{\lambda}{2}, \frac{3 \lambda}{2}, \frac{5 \lambda}{2} \\
& \operatorname{sen} \theta=\frac{\lambda}{a}, \frac{3 \lambda}{a}, \frac{5 \lambda}{a}
\end{aligned}
$$

A mesma condição será satisfeita para os raios $2 e 3$, na metade inferior

## Dividindo a fenda em $N$ trechos



A diferença de caminho entre duas ondas partindo de pontos vizinhos:

$$
\delta=\frac{a}{N} \operatorname{sen} \theta
$$

Dividindo a fenda em $N$ trechos


## Distribuição de intensidade



## Difração por uma abertura circular



$$
\begin{gathered}
\text { Difração e } \\
\text { Interferência }
\end{gathered}
$$


single slit diffraction pattern

double islit interference pattern
http://www.a-levelphysicstutor.com/wav-light-inter.php

single slit diffraction pattern

http://www.a-levelphysicstutor.com/wav-light-inter.php


IIIII
2 fendas

5 fendas

## REDEDEDIFRAÇÃO

Conjunto de $N$ fendas muito estreitas, separadas pela distância d



Com o aumento do número de fendas (ou linhas) a largura dos máximos fica menor e eles ficam mais separados

## Rede de Difração



## Limite de resolução



## Limite de resolução- Critério de Rayleigh



Máximo de $S_{2}$ coincide com o primeiro mínimo de $S_{1}$
$\theta_{\text {min }}=\lambda / a$
$\theta_{\min }=1,22 \lambda / D$

Fenda de largura a
Abertura circular de diâmetro D

Objetos no espaço visual


George Serraut

## Difração de Raios Xe lei de Bragg

1895 - Descoberta por W. Roetgen
1913 - Max von Laue

- utiliza para revelar estrutura regular 30 de um cristal


Onda eletromagnética - $\lambda \cong 0,1 \mathrm{~nm}$
Espaçamento entre os átomos em um sólido $\approx \lambda$ do raios $X$

## Difração de Raios Xe Lei de Bragg



