2

Flexo-Compressão de Barras Esbeltas — Teoria de Segunda Ordem

Edgard S. Almeida Neto Escola Politécnica da USP

26 de Maio de 2017

Conteúdo

		\vdash
1.2	1.1	Sist
1.2 Estruturas Hiperestáticas	1.1 Estruturas Isostáticas	Sistematização da Resolução
7		

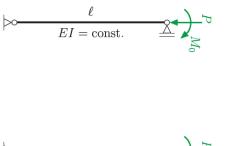
1 Sistematização da Resolução

Exemplo 1 Para as estruturas indicadas nas figuras a seguir:

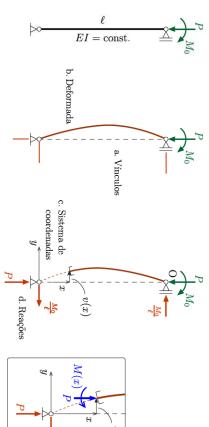
- trace a deformada da estrutura;
- escreva a expressão do momento fletor M(x);
- forneça as condições de contorno.
- $\bullet\,$ obtenha a expressão geral da linha elástica v(x);

1 Estruturas Isostáticas

a) Coluna biapoiada



a) Coluna biapoiada



Momento fletor

$$M(x) = \frac{M_0}{\ell} x + Pv(x)$$

S Almeida Neto (PEF-EPUSP) - Deformação na Flexo-Compressão de Barras F

$v'' + k^2 v = k^2 \left(-\frac{M_0}{P} \frac{x}{\ell} \right) \tag{a}$

A solução tem a forma geral

$$v(x) = v_{\rm h}(x) + v_{\rm p}(x)$$

em que $v_{
m h}(x)=A\sin kx+B\cos kx$ é a solução da equação homogênea

$$v'' + k^2 v = 0$$

e $v_{\rm p}(x)$ é uma solução particular que satisfaz a equação diferencial (a) Se o lado direito é um polinômio, $v_{\rm p}(x)$ é um polinômio de mesmo grau

$$v_{\mathbf{p}}(x) = b_0 + b_1 x$$

e coincide com a expressão entre parênteses para polinômios de grau 1 ou 0

$$v_{\rm p}(x) = -\frac{M_0}{P} \frac{x}{\ell}$$

Equação da linha elástica:

$$v'' = -\frac{M(x)}{EI} = -\frac{1}{EI} \left(\frac{M_0}{\ell} x + P_V \right)$$
$$= -\frac{M_0 x}{EI} \frac{P}{\ell} - \frac{P}{EI} v$$
$$= -\frac{M_0 P x}{P EI} \frac{P}{\ell} - \frac{P}{EI} v$$
$$= k^2 \left(-\frac{M_0 x}{P \ell} \right) - k^2 v$$

Reunindo os termos em v(x) do lado esquerdo, temos

$$v'' + k^2 v = k^2 \left(-\frac{M_0}{P} \frac{x}{\ell} \right)$$

Assim

$$v(x) = A\sin kx + B\cos kx - \frac{M_0}{P}\frac{x}{\ell}$$

A determinação das constantes de integração A e B requer duas condições de contorno

Na viga biapoiada são conhecidos os deslocamentos das duas extremidades

$$v(0) = 0 \Rightarrow \boxed{B = 0}$$
 $v(\ell) = 0 \Rightarrow A \sin k\ell - \frac{M_0}{P} = 0 \Rightarrow \boxed{A = \frac{M_0}{P \sin k\ell}}$

Introduzindo na expressão de u(x) e colocando em evidencia M_0/P , resulta

$$v(x) = \frac{M_0}{P} \left(\frac{\sin kx}{\sin k\ell} - \frac{x}{\ell} \right)$$

O momento de segunda ordem é dado por

$$M(x) = \frac{M_0}{\ell} x + Pv(x) = \frac{M_0}{\ell} x + M_0 \left(\frac{\sin kx}{\sin k\ell} - \frac{x}{\ell} \right) = M_0 \frac{\sin kx}{\sin k\ell}$$

Exceto nas extremidades, v(x) e M(x) tendem para zero quando $\sin k\ell o 0$

$$k\ell=0$$
 $\sqrt{\frac{P}{EI}}\ell=0$ $P=0$ (trivial) $k\ell=\pi$ $\sqrt{\frac{P}{EI}}\ell=\pi$ $P_{\rm cr}=\frac{\pi^2 EI}{\ell}$ $k\ell=2\pi$ $\sqrt{\frac{P}{EI}}\ell=2\pi$ $P_{\rm cr}=\frac{4\pi^2 EI}{\ell}$

A menor das cargas críticas coincide com a carga de flambagem da coluna

$$P_{\rm cr} = \frac{\pi^2 EI}{\ell}$$

Ela é uma propriedade da coluna e independe do carregamento

18 de Maio de 2016 13 / 18

Na teoria de primeira ordem, o momento na seção central é

$$M_{1^{\mathbf{a}}}\left(rac{\ell}{2}
ight) = rac{M_0}{2}$$

Na teoria de segunda ordem ele depende da força P através de $k\ell$

$$M\left(\frac{\ell}{2}\right) = M_0 \frac{\sin\frac{k\ell}{2}}{\sin k\ell} = M_0 \frac{\sin\frac{k\ell}{2}}{2\sin\frac{k\ell}{2}\cos\frac{k\ell}{2}} = \frac{M_0}{\cos\frac{k\ell}{2}}$$

Logo

$$k\ell=1$$
 $P=rac{EI}{\ell^2}=0,101P_{
m cr}$ $M\left(rac{\ell}{2}
ight)=0,57M_0=1,14M_{1^{\rm a}}$ $k\ell=2$ $P=rac{4EI}{\ell^2}=0,405P_{
m cr}$ $M\left(rac{\ell}{2}
ight)=1,08M_0=2,16M_{1^{\rm a}}$

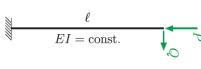
O uso da fórmula aproximada $\tilde{M} = \frac{M_{
m pa}}{1-P_{
m cr}}$ fornece

$$k\ell=1$$
 $\tilde{M}\left(\frac{\ell}{2}\right)=1,11M_{1^{\mathrm{a}}}$ (Erro 2,5%) $k\ell=2$ $\tilde{M}\left(\frac{\ell}{2}\right)=1,68M_{1^{\mathrm{a}}}$ (Erro 22,2%)

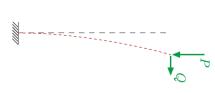
Edgard S Almeida Neto (PEF-EPUSP) Deformação na Flexo-Compressão de Barras I 18 de Maio de 2016

c) Coluna com engaste móvel

b) Coluna em balanço

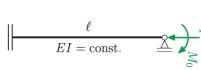


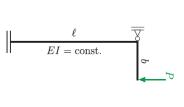




É possível evitar a incógnita cinemática f adotando um sistema de eixos que translada horizontamente com a seção de topo.

O momento M_0 pode ser provocado por uma força aplicada em um trecho em balanço.





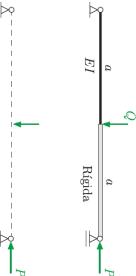
EI = const.

6

Ö

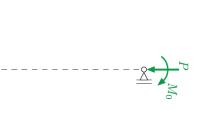
- <u>\$</u>-----<u>\$</u>
- <u>X</u>-----

e) Viga biapoiada com trecho rígido



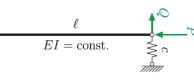
1.2 Estruturas Hiperestáticas

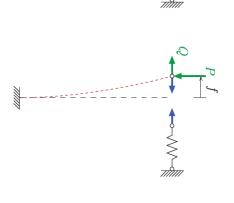
a) Coluna apoiada e engastada



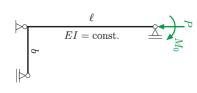
 ℓ EI = const.

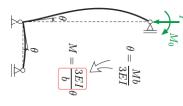
b) Coluna presa a uma mola linear





c) Coluna presa a uma mola rotacional





Uma barra transversal de comprimento b pode fazer o papel da mola.

