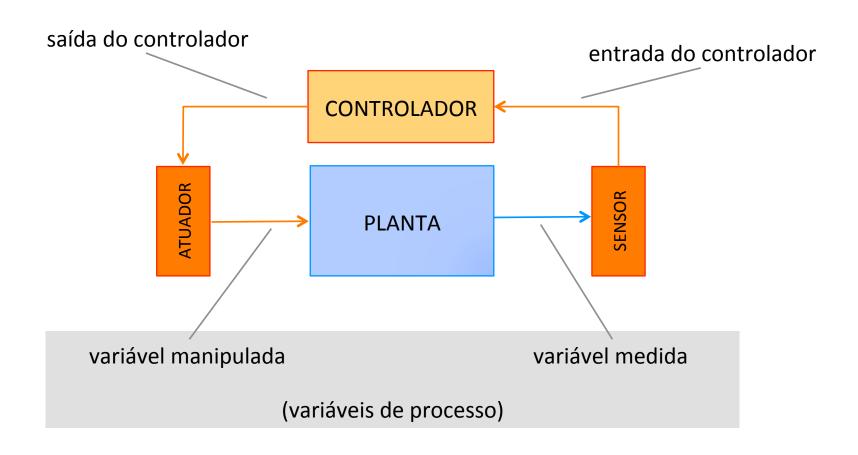

PTC3421 – Instrumentação Industrial

Introdução

V2017A

PROF. R. P. MARQUES

A malha básica de controle



Abstratamente pensamos nos blocos do diagrama acima como sistemas dinâmicos. Frequentemente ignoramos a dinâmica dos blocos SENSOR e ATUADOR.

Em termos industriais, SENSOR, CONTROLADOR e ATUADOR são equipamentos ou componentes.

Chamamos esses equipamentos ou componentes de INSTRUMENTOS.

Nomenclatura

Nomenclatura

PLANTA Quando tratamos da planta, dizemos

'PROCESSO INDUSTRIAL'.

INSTRUMENTOS Quando tratamos dos instrumentos, dizemos

'INSTRUMENTAÇÃO'.

Apesar de instrumentação também incluir os controladores, este curso tratará efetivamente de sensores, atuadores e aspectos relacionados (já temos diversas disciplinas tratando de controladores).

A ênfase será maior em sensores (como é usual em cursos de instrumentação).

Natureza de sensores e atuadores

Sensores obtêm informações do processo industrial, na forma de sinais.

A palavra-chave aqui é 'informação' em oposição a 'energia'.

Idealmente sensores coletam informações com o mínimo de influência sobre o processo.

Atuadores utilizam informações do controle para modificar o comportamento do processo, o que certamente envolve energia.

A ideia geral aqui é a transformação de 'informação' em 'energia'.

A natureza física de sensores e atuadores é bem diversa.

5

Alguns exemplos

Num carro: velocímetro (sensor)

medidor de combustível (sensor)

indicador de combustível baixo (sensor / alarme)

acelerador (atuador)

câmbio (atuador) volante (atuador)

Num processo industrial:

medidores de vazão, temperatura,

nível, etc. (sensores)

válvulas, relés, inversores (atuadores)

etc. etc. etc.

Instrumentação

A disciplina que denominamos INSTRUMENTAÇÃO se desenvolveu de maneira paralela e frequentemente independente da teoria de controle.

A teoria de controle foi criada e se desenvolveu em laboratórios, universidades e foi impulsionada por grandes projetos e eventos, como a corrida espacial, a segunda guerra mundial ou a guerra fria.

Instrumentação se desenvolveu em ambiente industrial com auxílio de fornecedores, com o propósito de atender a necessidades e resolver problemas específicos do dia a dia da indústria.

Desde o final do Séc. XIX já se reconhecia instrumentação como uma disciplina, e nessa época já existiam livros sobre o assunto. Os primeiros livros de controle foram editados durante a segunda guerra mundial.

O Curso

O que este curso contempla:

- É um curso básico com princípios de instrumentação para engenharia de controle.
- É um curso voltado a aplicações industriais típicas.
- É um curso que privilegia conceitos e enfoque sistêmico, em detrimento de detalhes factuais.

O Curso

O que este curso NÃO contempla:

- Não é um curso de especificação, projeto ou configuração de instrumentos.
- Não é um curso exaustivo (no sentido de completude).
- Não explora em detalhe a física relacionada ao funcionamento dos instrumentos.
- Não explora em detalhe o funcionamento e operação de processos industriais.
- Aspectos de instrumentação não relacionados diretamente a automação e controle (e.g. metrologia, calibração, etc.)

... e muitas outras coisas

Programação do curso

Introdução (esta apresentação)

- Aspectos gerais de instrumentos Classes, tipos, definições, transmissão, etc.
- 2. Simbologia ANSI/ISA-5.1-2009 e documentação P&ID (Piping & Instrumentation Diagram), etc.
- Medidas de temperatura
 Aspectos das medidas de temperatura. Sensores tradicionais e modernos (termopares, termorresistores, etc.)
- Medidas de pressão
 Aspectos das medidas de pressão. Sensores tradicionais e modernos.

Programação do curso

- Medidas de nível
 Aspectos das medidas de nível. Sensores tradicionais e modernos.
- 6. Medidas de vazão Aspectos das medidas de vazão. Sensores tradicionais e modernos.
- 7. Medidas elétricas Casos pertinentes (não é a ênfase do curso).
- Outras medidas Medidas analíticas, etc.

Programação do curso

- 9. Atuadores Válvulas e acionamentos
- 10. Redes de processo
- 11. Outros tópicos Sistemas críticos, confiabilidade, etc.

Referências

- ANSI/ISA, ANSI/ISA-5.1-2009 Instrumentation Symbols and Identification
 (norma para P&ID)
- E. A. Bega (org), Instrumentação Industrial, 3ª. Ed.
 (livro brasileiro de instrumentação ênfase em Óleo & Gás)
- 3. E. A. Bega, Instrumentação Aplicada ao Controle de Caldeiras, 3ª. Ed. (para exemplos)
- 4. M.C.M.M. De Campos, H.C.G. Teixeira, Controles Típicos de Equipamentos e Processos Industriais, 2ª. Ed. (para exemplos)
- 5. W.C. Dunn, Fundamentos de Instrumentação Industrial e Controle de Processos, 1ª. Ed. (edição brasileira instrumentação em geral)

Referências

- 6. A.B. Fialho, Instrumentação Industrial: Conceitos, Aplicações e Análises, 3ª. Ed. (instrumentação básica)
- 7. C.D. Johnson, **Process Control Instrumentation Technology**, 7^a. Ed. (ênfase em eletrônica para instrumentação)
- 8. B.G. Lipták, Instrument Engineer's Handbook, 4ª. Ed. (o volume I é a bíblia de instrumentação)
- R.B. Northrop, Introduction to Instrumentation and Measurements. (instrumentação geral)
- 10. SENAI-SP, **Coleção Automação** (diversos volumes básico e relativamente completo)

Avaliação

Duas provas: A1, na semana da P2 (23/10 a 27/10)

A2, Na semana da P3 (11/12 a 15/12)

(as provas serão sem consulta)

Um trabalho: T1, ao longo do curso

O trabalho envolverá o laboratório de controle de processos do LAC (mais detalhes oportunamente).

Média final: (A1 + A2 + T1)/3