

Meyer et al. 1999

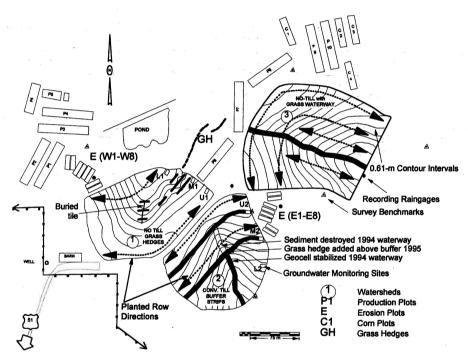


Figure 1-Layout of selected research plots and watersheds at the Nelson Farm, 1995.

Table 1. Crop management histories and soybean yields for three Nelson Farm research watersheds from 1988 through 1995

Telson Farm research watersheds from 1700 through 1775									
Year	Watershed	Watershed	Watershed						
	No. 1	No. 2	No. 3						
	(2.13 ha)	(2.09 ha)	(3.17 ha)						
1988	Tilled, 0.91-m row	Tilled, 0.91-m row	Tilled, 0.91-m row						
	1.92 t/ha	1.86 t/ha	1.71 t/ha						
1989	Tilled, 0.91-m row	Tilled, 0.91-m row	Tilled, 0.91-m row						
	0.98 t/ha	0.93 t/ha	0.86 t/ha						
1990	No-till, 0.91-m row 1.15 t/ha	Tilled, 0.91-m row 1.03 t/ha	No-till, 0.91-m row 0.83 t/ha Waterway seeded May & Oct						
1991	No-till, 0.91-m row 2.02 t/ha	Tilled, 0.91-m row 1.79 t/ha Buffer strips seeded Oct	No-till, 0.91-m row 1.60 t/ha						
1992	No-till, 0.91-m row	Tilled, 0.91-m row	No-till, 0.91-m row						
	2.73 t/ha	2.83 t/ha	3.03 t/ha						
1993	No-till, 0.18-m drill	Tilled, 0.91-m row	No-till, 0.91-m row						
	2.09 t/ha	1.96 t/ha	1.81 t/ha						
1994	No-till, 0.18-m drill 2.69 t/ha Grass hedges transplanted May	Tilled, 0.91-m row 2.14 t/ha Gully filled/waterway seeded Aug	No-till, 0.91-m row 2.51 t/ha						
1995	No-till, 0.18-m drill 1.70 t/ha Gully filled/three hedges July	Tilled, 0.91-m row 1.55 t/ha Switchgrass added to buffer June	No-till, 0.91-m row 1.12 t/ha						

Meyer et al. 1999

Erosion plots

Table 3. Average annual runoff and soil loss from erosion plots at the Nelson Farm

	1.0						
,		1990-1992 Rainfall Av. = 1540 mm		Rainfa	-1995 ll Av. = 2 mm	1990-1995 Rainfall Av. = 1361 mm	
Cropping System	Plots	Runoff (mm)	Erosion (t/ha)	Runoff (mm)	Erosion (t/ha)	Runoff (mm)	Erosion (t/ha)
Sb. conv.	W8 & E4	325 a*	9.00 a	185 a	12.66 a	256 a	10.84 a
Sb. nt. vol.	W7 & E5	233 abc	1.34 bc	171 a	1.16 b	202 a	1.25 b
Sb. wht. dbl.crop	W6 & E6	224 abc	0.58 c	148 a	1.25 Ъ	186 a	0.92 b
Sb. ridg. till vol.	W5 & E3	222 abc	3.32 ab				
Cot. nt. vetch	"		1	178 a	3.96 ab		
Cot. nt. wht.	W1 & E2	305 ab	3.56 b	182 a	3.23 ab	243 a	3.38 b
Cot. nt. vol.	W2 & E1	193 bc	3.16 b	140 a	3.94 ab	167 a	3.56 b
Sorg. nt. vetch	W3 & E7	121 c.	1.03 bc				
Corn nt. vetch	**			149 a	2.15 b		
Sorg. nt. vol.	W4 & E8	242 ab	1.70 bc				
Corn nt. vol.	"		* W **	162 a	2.20 b		

^{*} Means within a column followed by the same letter are not statistically different (P < 0.05) based on the Satterthwaite approximation for the denominator degrees of freedom (SAS, 1996).

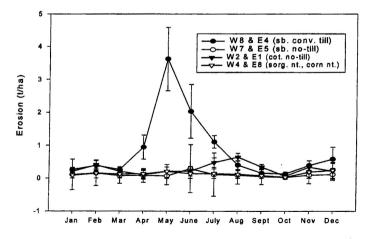


Figure 2-Average monthly erosion during six-year period (1990-1995) for several cropping systems on Nelson Farm erosion plots.

Watersheds

Table 6. Annual rainfall, runoff, and sediment yield from three research watersheds at Nelson Farm

			Watershed No. 1		shed . 2	Watershed No. 3		
Year	Rain (mm)	Run- off (mm)	Sed. Yield (t/ha)	Run- off (mm)	Sed. Yield (t/ha)	Run- off (mm)	Sed. Yield (t/ha)	
1989	1570	594	18.6	690	44.0	824	28.7	
1990	1730	540	1.2	691	10.2	750	2.2	
1991	1730	632	0.5	870	32.6	805	0.7	
1992	1157	240	0.3	284	19.0	300	0.4	
1993	1150	237	0.4	300	2.9	332	0.2	
1994	1340	331	0.9	437	77.3*	402	0.7	
1995	1080	214	8.9†	364	6.4	305.	0.3	

Table 7. Average annual rainfall, runoff, sediment concentration, and sediment yield for three watersheds at the Nelson farm during one period when they received identical treatment and two subsequent periods when alternative farming practices were evaluated

1	Tillage	. , , , ,			Sediment			
Watershed	Manage-	Rain-	Run-	Runoff	Concen-	Sediment		
and Gaging	ment	fall	off	(% of	tration	Yield		
Period	System	(mm)	(mm)	Rainfall)	(ppm)	(t/ha)		
Watershed No. 1								
1/89 to 4/90	Tilled	1671	577	35	1340	18.3		
5/90 to 12/91	No-till	1760	653 -	37	81	0.4		
1/92 to 12/95	No-till	1182	256	22	29*	0.5*		
		Waters	hed No	. 2				
1/89 to 4/90	Tilled	1671	689 -	41	2520	40.4		
5/90 to 12/91	Tilled	1760	888 -	50	5660	22.0		
1/92 to 12/95	Tilled &	1182	346 -	29	621*	12.3*		
	buffer stri	ps						
	-	Waters	hed No	. 3				
1/89 to 4/90	Tilled	1671	826 -	49	1490	28.2		
5/90 to 12/91	No-till	1760	832 -	47	289	0.9		
	& grass							
	waterway							
1/92 to 12/95	No-till	1182	335	28	28	0.4		
	& grass waterway							

^{*} Excluding data from gully filling periods (see table 1 and table 6).

Wilson et al. 2004

Table 1. Treatment designations with their corresponding replications (Reps), tillage history, current tillage practice, and residue management.

	P^	actice, and	residue munugem	CAICA		
Reps	History	Tillage	Residue	Designation		
2	[a]Conv. tillage	Tilled	Residue left	Cth-tilled, RL		
3	Conv. tillage	Tilled	Residue removed	Cth-tilled, RR0		
2	Conv. tillage	Tilled	Residue removed	Cth-tilled, RR1		
2	Conv. tillage	Not tilled	Residue removed	Cth-not tilled, RR0		
1	Conv. tillage	Not tilled	Residue removed	Cth-not tilled, RR1		
2	No-tillage	Not tilled	Residue left	Nth-not tilled, RL		
5	No-tillage	Not tilled	Residue removed	Nth-not tilled, RR0		
2	No-tillage	Not tilled	Residue removed	Nth-not tilled, RR1		
3	No-tillage	Tilled	Residue removed	Nth-tilled, RR0		
2	No-tillage	Tilled	Residue removed	Nth-tilled, RR1		

[[]a] Conv. = conventional

Table 2. Treatment means for time to runoff initiation, maximum runoff rate, linear flow velocity, and maximum sediment concentration.[a]

		Runof	f Initiatio (min)	n Time	Maximum Runoff Rate (mm h ⁻¹)		Linear Flow Velocity (m h ⁻¹)		Maximum Sediment Conc. (mg L ⁻¹)				
Tillage	Residue	Dry	Wet	V. Wet	Dry	Wet	V. Wet	Dry	Wet	V. Wet	Dry	Wet	V. Wet
CTh-t	RL	12.0 a	0.9 cd	0.6b c	53.2 abc	55.2 b	49.9 с	180.6 a	238.3 a	399.6 ab	34650 cd	44050 cd	57800 bcd
CTh-t	RR0	8.1 abc	0.8 d	0.5 c	55.9 abc	60.6 ab	61.7 ab	248.9 a	341.5 a	337.5 ab	56500 bc	71000 bc	70400 bc
CTh-t	RR1	8.5 abc ·	0.8 d	0.5 c	57.0 abc	61.6 ab	63.6 ab	247.1 a	320.1 a	348.6 ab	67250 abc	83100 ab	90050 ab
CTh-nt	RR0	2.3 ac	1.1 cd	0.6 bc	60.5 ab	62.8 ab	63.4 ab	271.8 a	235.0 a	231.7 ab	36950 bcd	41100 d	44850 de
CTh-nt	RR1	2.5 bc.	1.0 cd	0.6 bc	60.3 abc	65.4 ab	65.5 ab	293.2 a	430.6 a	457.9 a	50900 abcd	58200 bcd	66500 bcd
NTh-t	RR0	7.5 abc	1.3 bc	0.8 bc	51.8 bc	59.1 b	59.6 b	256.2 a	273.0 a	280.0 ab	22133 d	33300 d	38867 de
NTh-t	RR1	10.9 ab	0.9 cd	0.5 c	49.1 c	61.7 ab	63.2 ab	142.7 a	306.9 a	340.4 ab	94000 a	110950 a	101250 a
NTh-nt	RL	3.0 c	2.3 a	1.7 a	56.0 abc	58.3 ab	61.8 ab	193.2 a	162.0 a	131.8 b	8450 d	20750 d	13550 f
NTh-nt	RR0	3.5 c	1.7 b	1.0 b	59.1 ab	62.4 a	64.7 a	168.4 a	237.2 a	261.3 ab	16360 d	24380 d	23840 ef
NTh-nt	RR1	2.3 c	1.2 cd	0.6 c	63.4 a	62.5 ab	62.0 ab	197.1 a	263.5 a	287.1 ab	71150 ab	49750 cd	52050 cd

[[]a] Different letters indicate that treatments within a column are significantly different at the 0.05 level.

Wilson et al. 2004

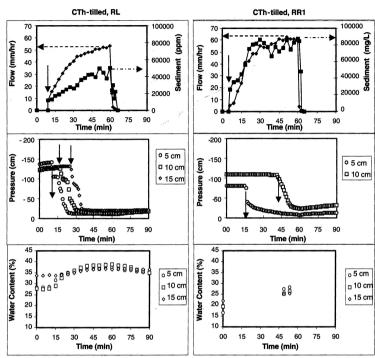


Figure 2. Runoff (flow), sediment concentration, soil water pressure, and soil water content by volume over time for the CTh-tilled for RL (left) and RRI (right) treatments. Solid arrows indicate time to runoff initiation (upper graphs) and to tensiometer response (lower graphs); dashed lines indicate maximum runoff rates and maximum sediment concentrations.

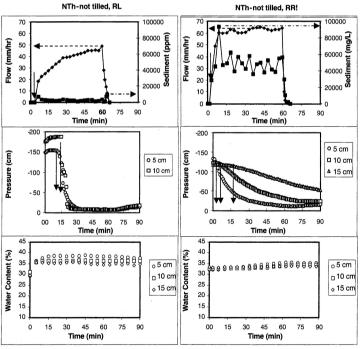


Figure 3. Runoff (flow), sediment concentration, soil water pressure, and soil water content by volume over time for the NTh-not tilled for RL (left) and RRI (right) treatments. Solid arrows indicate time to runoff initiation (upper graphs) and tensiometer response (lower graphs); dashed lines indicate maximum runoff rates and maximum sediment concentrations.

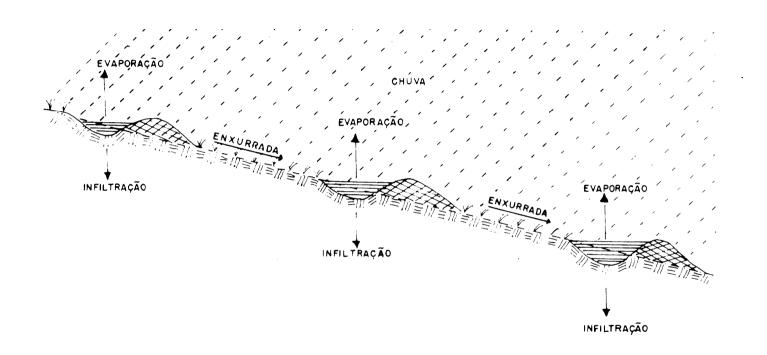
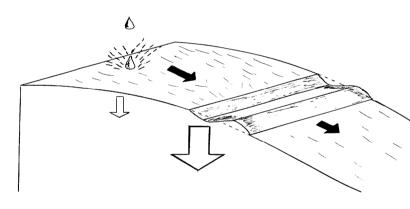


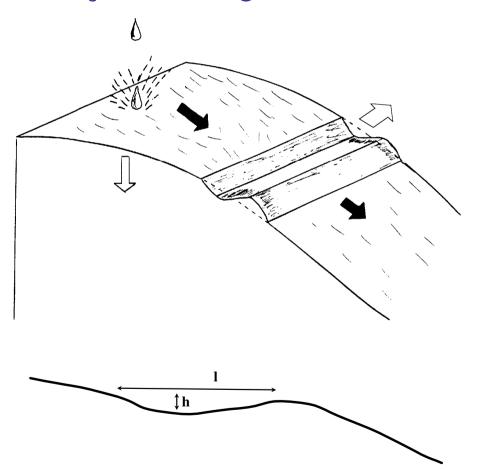
FIGURA 2 – Representação esquemática de um terraceamento mostrando a retenção das águas da enxurrada e o parcelamento do declive.

Terraço de Infiltração

d = distância entre os terraços. (Ex.: 35m)


I = distância nivelada do camalhão até o nível do terreno. (Ex.: 6,0m)

h = altura do fundo do sulco do terraço até a crista do camalhão (Ex.: 0,8m)


$$Seç \tilde{a}o (S, 1/m) = \frac{l \times h}{2} \times 1000$$

 $Seç \tilde{a}o (S, 1/m) = \frac{6,0 \times 0,8}{2} \times 1000 = 2400 1/m$

Chuva (mm) =
$$\frac{S}{d} \times 2$$

Chuva (mm) =
$$\frac{2400}{35} \times 2 = 136mm$$

Terraço de Drenagem

Dimensionamento:

$$Sec\,\tilde{\omega}$$
 (S, 1/m) = $\frac{l\times h}{2}$ ×1000 ≈ 15001/m

Cálculo da declividade do canal:

- -Vazão
- -Seção
- -Eq. de Manning
- -Raio hidráulico

Fórmulas básicas para dimensionamento hidrológico

$$P = \left\{ T^{\left(\alpha + \frac{\beta}{T^{0,25}}\right)} \right\} \times \left\{ a \times t + b \times \log(1 + c \times t) \right\}$$

P = Precipitação máxima, mm

T = tempo de recorrência, anos

t = tempo de duração da chuva, h

 α = constante que depende da duração precipitação (15'=0,122; 30'=0,138; 1h=0,156; 2h=0,166; 4h=0,174 e 24h=0,170)

B = constante que depende da duração da e da localidade (5'= - 0,01; 15'= 0,09; 30'= 0,11 1h a 6 d= 0,11)

a, b, e c = constantes que dependem da localidade (a= 0,38; b= 26,73; c= 21,75)

$$Q_{max} = \frac{C \times i \times A}{360}$$

Qmax = vazão máxima esperada, m3 s-1

C = coeficiente de enxurrada.

i = intensidade (mm h-1) da precipitação máxima esperada com certo período de retorno (normalmente 15 anos) e de duração igual ao tempo de concentração.

A = área de captação no ponto de dimensionamento, ha

Fórmulas básicas para dimensionamento hidrológico

$$V = \frac{1}{n} \times R^{\frac{2}{3}} \times \sqrt{i}$$

V = velocidade da água num canal aberto, m s-1 (varia de 0,5m s-1 a 1,5m s-1 em terraços e canais escoadouros)

n = coeficiente de rugosidade, varia de 0,06 a 0,1 em canais de terra vegetados

R = raio hidráulico do canal (área molhada / perímetro molhado)

i = declividade do canal, m/m

Velocidade de escoamento superficial (V, m s-1) em função do tipo de superfície e do declive (I, %).

Uso da terra	Velocidade, m s ⁻¹
Florestas ou mata natural	V=0,08 I ^{1/2}
Área reflorestada ou em cultivo mínimo	V=0,15 I ^{1/2}
Pastagens	V=0,21 I ^{1/2}
Áreas cultivadas	V=0,27 I ^{1/2}
Solo descoberto	V=0,30 I ^{1/2}
Talvegues ou canais vegetados	V=0,45 I ^{1/2}
Áreas pavimentadas	V=0,60 I ^{1/2}