Testes de Hipóteses

VPS126

Lógica dos testes de hipótese

- Elaborar uma Hipótese Nula (também chamada H0), com a qual é possível prever a probabilidade de amostras aleatórias apresentarem uma certa característica.
- Calcular a probabilidade da amostra analisada ser obtida, dado que a hipótese nula é verdadeira (valor de p, p-valor).
- Comparar essa probabilidade (valor de p) com um valor prédefinido (alfa, nível crítico, Erro Tipo I).
- Caso a probabilidade seja baixa, menor que o valor pré-definido (alfa), temos evidências de que a Hipótese Nula seja falsa.
- Caso a probabilidade seja alta, maior que o valor pré-definido (alfa), não temos evidências de que a hipótese nula seja falsa
 Atenção: Isso não quer dizer, necessariamente, que H0 é verdadeira.

Valor de p

- Se o valor de p for muito pequeno, então é pouco provável que tenhamos obtido os resultados observados sendo H₀ verdadeira, então rejeitamos H₀.
- Se o valor de p for muito grande, então há uma grande chance de termos obtido os dados observados sendo H₀ verdadeira, então não rejeitamos H₀.

Teste de hipóteses

- Ferramenta estatística para auxiliar no acúmulo de evidências sobre uma questão
- "Média de glicemia de um grupo de animais é diferente do esperado?"
- "Qual o melhor tipo de dieta para cães diabéticos?"
- "Proporção de crianças daltônicas em uma cidade é a esperada?"
- "Qual o melhor método para inseminação artificial?"
- "Qual a relação entre peso de ovelhas e sua circunferência abdominal?"

Valor de p ou P-valor

 Dos dados pode-se calcular o valor da estatística do teste (expressão algébrica para a hipótese que está sendo testada).

Há uma probabilidade relacionada a este valor da estatística do teste que se chama valor de p.

 O valor de p (nível descritivo) descreve a chance de obter o resultado observado (ou um mais extremo) se a hipótese nula for verdadeira.

Significância em alguns programas estatísticos

- muito altamente significante (*** representa p<0,001)
- altamente significante (** representa 0,001<p<0,01)
- significante (* representa 0,01<p<0,05)
- não-significante (NS representa p>0,05)

Cuidado! Esse critério é arbitrário e deve considerado com precaução. A decisão com base no valor de $\it p$ deve ser tomada em função do problema analisado.

Erros Tipo I e Tipo II

A decisão de **rejeitar** ou **não rejeitar** H₀ pode estar incorreta

Erro tipo I: rejeitar H_0 quando H_0 é verdadeira. [probabilidade de rejeitar H_0 de forma incorreta $\Rightarrow \alpha$]

Erro tipo II: não rejeitar H_0 quando H_0 é falsa. [probabilidade de cometer um erro tipo II $\Rightarrow \beta$]

$\alpha e \beta$

Probabilidade de cometer um erro tipo I : **nível de significância do teste** (α)

Ex. Se α =0,05 , há uma chance de 1 em 20 de rejeitar H $_{0}$ quando H $_{0}$ é verdadeira

Escolha de α :

 H_0 será rejeitada se $p \le \alpha$ H_0 não será rejeitada se $p > \alpha$

p: Valor de p ou P-valor é o nível descritivo (veja adiante)

Escolha do teste

- Como escolher o teste de hipótese mais adequado para a pergunta a ser respondida?
- Diferentes testes de hipóteses foram desenvolvidos para lidar com diferentes situações.
- É necessário checar em quais situações cada teste é aplicável, e verificar se os dados atendem às premissas do teste escolhido.

Erros Tipo I e Tipo II

	"Realidade"	
Conclusão do teste (baseada na amostra)	H ₀ verdadeira	H₀ falsa
Rejeitar H ₀	erro tipo I (α)	decisão correta
Não rejeitar H ₀	decisão correta	erro tipo II (β)

$\alpha e \beta$

Probabilidade de cometer um erro tipo II (β) (probabilidade de não rejeitar H_0 quando H_0 é falsa)

• Normalmente se pensa em 1- β (poder do teste): probabilidade de rejeitar H_0 quando H_0 é falsa

Lembre-se

Sempre dê preferências aos testes
 Paramétricos: Quando as premissas desses
 são satisfeitas, eles possuem maior poder
 (menor erro Tipo II) do que os Não paramétricos.

Lembre-se

 Variável nominal pode ser utilizada para dividir o conjunto de dados em grupos

Transformação de variáveis

Quantitativa
Qualitativa Ordinal
Qualitativa Nominal

Atenção!

- O que é estatisticamente significante pode não ser biológica ou clinicamente significante e vice-versa.
- Ex. Métodos de inseminação artificial (uma economia de 1 ou 2% pode ser uma diferença econômica grande, mas estatisticamente difícil de se obter)
- Ex. Dois diferentes anestésicos (pequenas variações na pressão sangüínea; a diferença pode ser estatisticamente significante, mas de pequena importância biológica)

Dois modos de se testar H₀

- Calcula-se a estatística (fórmula) do teste e o valor de p
 - \Rightarrow rejeita-se H_0 se p for pequeno
- Calcula-se IC 95%
 - \Rightarrow rejeita-se H_0 se o valor do parâmetro ficar fora dos limites de confiança (para um nível de 5%)

Inferência sobre média de uma amostra de dados com distribuição Normal



Adaptado de Fisher LD, Van Belle G. "Biostatistics: a Methodology for the Health Sciences", Wiley, 1993.

A distribuição dos dados é Normal?

- Se a distribuição dos dados não for Normal, há dois modos de se prosseguir na análise dos dados:
 - Transformar os dados para se aproximar da Normalidade (ex. transformação logarítmica)
 - Teste não-paramétrico (que não faz nenhuma hipótese sobre a distribuição)

Implicações do tamanho da amostra

- amostras pequenas (< 6 observações): é difícil dizer qual a distribuição da variável; podem ser pouco representativas da população
- amostras pequenas (< 30 observações): distribuição de t de Student para dados que se distribuem de modo Normal
- amostras grandes: distribuição do teste é Normal (Teorema do Limite Central)

Observação: teste Z e teste t

 No curso, nos casos em que o teste Z seria adequado, utilizaremos o teste t, que fornece resultados equivalentes.

Teste t para uma amostra

- Investigar se a média de um grupo de observações assume um certo valor.
- Exemplo (Petrie e Watson, 1999):
- Questão: Deseja-se saber se suínos em crescimento de um certo lote de uma granja apresentam uma conversão alimentar média diária consistente com o ganho médio esperado para aquela granja (607 g/dia).

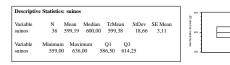
Procedimento do teste

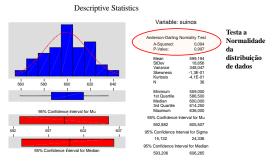
1) Especificar a hipótese nula e a hipótese alternativa:

$$H_0: \mu = 607 \ g / dia$$

 $H_1: \mu \neq 607 \ g / dia$

2) Estatística descritiva e gráfico para verificar a distribuição dos dados (diagrama de pontos, *boxplot*, histograma)





Teste de Anderson-Darling: H₀: Distribuição é Normal H₁: Distribuição não é Normal Para α = 0,05 = 5%:

Como p=0,997, p > $\alpha \Rightarrow$ Não se rejeita H_0 , ou seja, assumimos que a distribuição seja Normal

3) Calcular a estatística (fórmula) do teste: $t = \frac{\overline{x} - \mu}{s_m}, \text{ onde } s_m = \frac{s}{\sqrt{n}}$

4) Obter o valor de p:

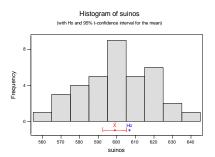
p=0,017 . Como p<2%, há uma chance de menos de 2% de se obter um ganho médio diário de 599,2 g/dia se H $_{\rm 0}$ for verdadeira.

5) Decidir se rejeita ou não a hipótese nula H₀:

É pouco provável que H_0 seja verdadeira. Ou seja, os dados são inconsistentes com um ganho médio diário de 607 g. Para α =0,05: como p< α , rejeitamos H_0 para um nível de significância de 5%.

6) Determinar, se quiser, o intervalo de confiança de 95%

IC 95% : (592,88 ; 605,51). O IC95% não contém o valor testado (607g/dia), confirmando a rejeição de ${\rm H}_0$.



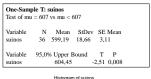
Mas, e se o teste fosse monocaudal?

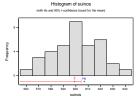
• A hipótese alternativa deve ser especificada antes da coleta dos dados e deve ser independente deles. Quando houver conhecimento prévio para dizer que a diferença ocorre em uma dada direção (maior ou menor), aplicamos o teste monocaudal.

$$H_0: \mu = 607 \ g / dia$$

 $H_1: \mu < 607 \ g / dia$

Teste t monocaudal





Conclusão: H₀ é rejeitada, porque p=0,8% é menor que um nível de significância de 5%.

Observe que este valor de p é a metade do valor obtido no teste bicaudal.

Cuidado: É mais fácil rejeitar H_0 quando o teste é monocaudal. No entanto, lembre-se que a hipótese nula, neste caso, deve ser feita apriori com base em conhecimentos prévios.