Mechanism of Action and Resistance to Plant Growth Regulators (Synthetic Auxins)

Dr. Scott Nissen, Professor Colorado State University, Fort Collins, CO

Assistance from: Drs. Greg Kruger, Mithila Jugulam

Outline

 Overview of current active ingredients and basic modes of action
 Current status of PGR herbicides
 Known mechanisms of resistance
 Implications for production agriculture

Herbicides that Mimic Natural Plant Hormone (PGR)

Natural plant hormones control

- growth, development
- tissue differentiation
- RNA and DNA synthesis
- Herbicides with this mode of action can do the same things at low concentrations
- At high concentrations these compounds are herbicides

PGR Mode of Action

- Symptoms
 - abnormal growth resulting in twisted stems
 - stem swelling due to rapid and uncontrolled cell division
 - differentiated cells changing to immature cells

Mechanism of Selectivity

- □ Hypothesis #1
 - Differential metabolism, grasses form amino acid conjugates, while broadleaves form sugar conjugates
- □ Hypothesis #2
 - Auxin receptors in grasses do not recognize these synthetic auxins so the cascade effect is never initiated.

PGR Mode of Action

Mode of action

- we understand symptoms
- we don't completely understand why grasses are resistant and broadleaf plants are susceptible
- lack of ethylene response
- differences in metabolism?

Effects of Picloram on Centaurea solstitalis

First symptom is downward bending or twisting of the stem, epinasty.

PGR symptoms on Centaurea diffusa

Picloram L/ha

Cirsium arvense response to aminopyralid 7 DAT

Cirsium arvense response to aminopyralid 14 DAT

Figure 1. Injury symptoms in dry bean field following corn.

Figure 2. Closer look at dry bean injury scattered throughout the field.

Root Absorption of PGR Herbicides

translocation to growing point

callus formation on roots

swollen hypocotyl

lack of root
development

Common Leaf Symptoms from PGR Exposure

normal

cupped and blistered from PGR exposure_____

Foliar PGR Simulated Drift

2,4-D on Tomato

Postemergence

Enhanced Burndown Study

Glyphosate (1 L/ha) + 2,4-D (1 L/ha)

Glyphosate (1 L/ha) + saflufenacil (0.07 L/ha) + Merge (1.0% v/v)

Dicamba Tolerant (DT) Soybean

Characteristics of PGR Herbicides

Clopyralid

- The most selective PGR herbicide
- Trees, corn, grass seed, range, pasture, cane berries, sugar beets, rape
- Annual weeds: wild buckwheat, cocklebur, jimsonweed, ragweeds
- Perennial weeds: Canada thistle, knapweeds, biannual thistles, composites species in general

Characteristics of PGR Herbicides

Triclopyr

- Specialized brush product and one of the best all around aquatic herbicides
- Conifer release, non-crop, cut stump, basal bark applications, utilities,
- Annual weeds: black medic, dandelions, ivy, burdock, plantian spp.
- Perennial weeds: many tree and brush species

Characteristics of PGR Herbicides

□ **2,4-D**

- First selective herbicide
- Small grains, corn, turf, non-crop, butyl ester can be used in alfalfa, aquatic uses
- Annual weeds: horseweed, dandelion, cocklebur, ragweeds, winter annuals, lambsquarters, pigweeds etc.
- Perennial weeds: probably not the best generally only provides the in season control

Specific Characteristics of PGR Herbicides

Herbicide	Water Solubility	Translocation	Persistence
Clopyralid	Acid 1000 ppm Salt 300,000 ppm Weak acid pKa 2.3	Excellent absorption and translocation	Avg 40 days Range 12-70 days
Tricolpyr	Acid 430 ppm Salt 2,000,000 ppm Ester 23 ppm Weak acid pKa 2.7	Excellent absorption and translocation	Avg 30 days Range 10-46
2,4-D	Acid 900 ppm BEE 100 ppm Salt 796 Isooctyl ester 0.03 ppm Weak acid pKa 2.8	Excellent absorption and translocation	Avg 10 days Range 7-32

Status of Synthetic Auxin Resistance

- Commelina diffusa
 First reported in Hawaii in 1957
 Selected in sugarcane
- Worldwide there are 30 officially reported cases of auxin herbicide resistance (HRAC website).
 Seven of thirty reports from US
 Only two reported from Brazil

Examples of Auxin Resistant Weeds

Family	Species	Herbicides	Year/Location
Asteraceae	Carduus nutans C. pycnocephalus Cirsium arvense Lactuca serriola Matricaria perforata	2,4-D 2,4-D MCPA 2,4-D, MCPA, dicamba 2,4-D	1981/New Zealand 1979/New Zealand 1979/Sweden 2007/USA 1975/France
Brassicaceae	Raphanus raphanistrum Sisymbrium orientale Sinapis arvense	2,4-D, MCPA 2,4-D, MCPA 2,4-D, MCPA, mecoprop, dicamba, picloram	1999/Australia 2005/Australia 1990/Canada
Poeace	Digitaria ischaemum Echinocloa crus-galli E. crus-pavonis E. colona	quinclorac	2002/USA 1999/Brazil 1999/Brazil 2000/Colombia

2,4-D Resistant Amaranthus tuberculatus

- High level of resistance reported in 2009 from a grass seed field in Western Nebraska, USA
- Herbicide use history was 12 years of 2,4-D use, sometimes multiple applications per year.
- Dr. Pat Tranel (U of I) has already identified
 Amaranthus rudis populations with resistance to 4 herbicide modes of action.
- □ Enlist[™] (Dow Agro) stacked herbicide technology may provide only temporal solution

21 DAT

0 18 35 70 140 280 560 1120 2240 2,4-D dose, g ae ha⁻¹

G. Kruger, UNL

Greenhouse Dose Response 21 DAT

Field Evaluations 14 DAT

Untreated

280 g ha⁻¹

1,120 g ha⁻¹ G. Kruger, <u>UNL</u>

Field Evaluations 14 DAT

4,480 g ha⁻¹

8,960 g ha⁻¹

35,840 g ha⁻¹

G. Kruger, UNL

Recovery and Flowering 84 DAT

Proposed Resistance Mechanisms

Possible Mechanisms of Auxinic Herbicide Resistance

- Reduced binding to the ABP1
- Reduced binding to other receptors (TIR1, AFB)
- Altered active transport
- Increased conjugation
- Increased metabolism

Implications For USA

- A. tuberculatus could force significant changes in mid-west production systems. (Dr. Pat Tranel, UI)
- A. tuberculatus is native species, there is no genetic bottle neck, massive amounts of genetic variability to select from.
- □ Enlist[™] (Dow Agro) stacked herbicide technology and Monsanto's dicamba resistant varieties will provide a temporary solution.
- Very high levels of 2,4-D resistance have been identified in Nebraska.
- HPPD herbicides were thought to provide a bridge until new modes of action could be discovered, we already have the first case of resistance.

Implications for Brazil

- Is there a A. palmeri or A. tuberculatus type plant lurking somewhere in Brazil or in surrounding country? (Blame it on Paraguay?)
- Brazil has the advantage of watching the US and hopefully preventing the same things from happening here.
- Coordination for resistance management efforts will be critical with university, industry and grower partnerships.

Acknowledgements

Dr. Greg Kruger, University of Nebraska-Lincoln Dr. Mithila Jugulam, Kansas State University