

Objetivos da palestra 1. Conhecer os principais métodos de detecção

- 2. Avaliar as vantagens e desvantagens de cada um
- 3. Verificar a praticabilidade de uso
- 4. Analisar como podem auxiliar no manejo da resistência e nas pesquisas com resistência

14/01/2016

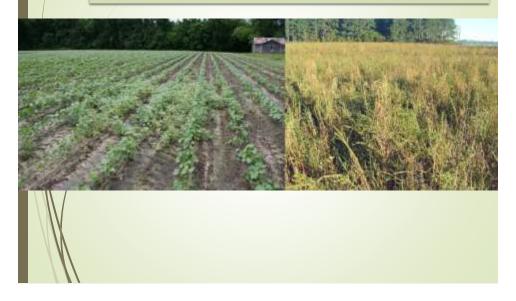
pjchrist@usp.br

2

Critérios para confirmação de plantas daninhas resistentes a herbicidas

"International Survey of Herbicide-Resistant Weeds"

http://www.weedscience.org/summary/home.aspx


Para um biótipo ser listado é necessário:

- 1. Obedecer a definição de resistência da WSSA
- 2. Dados de confirmação seguindo protocolos científicos
- 3. A resistência deve ser herdável
- 4. Demonstração de efeitos práticos no campo

Falha na conformidade com qualquer um destes critérios impede o registro do caso.

Detectar a resistência o mais rápido possível

Critério 1. Obedecer a definição de resistência

Heap and Lebaron, 2001; in Herbicide Resistance and World Grains

"A capacidade evolutiva de uma população de plantas daninhas, anteriormente suscetível ao herbicida, em resistir a um herbicida, e completar o seu ciclo de vida, quando o herbicida é usado no seu ritmo normal numa situação agrícola"

"The evolved capacity of a previously herbicide-susceptible weed population to withstand a herbicide and complete its life cycle when the herbicide is used at its normal rate in an agricultural situation"

Critério 2. Ter dados de confirmação seguindo protocolos científicos aceitáveis

Um método de detecção deve ser:

- √ Rápido
- ✓ Preciso
- ✓ Baixo custo
- ✓ De fácil execução
- Fornecer resultados precisos dos impactos da resistência nas atividades no campo

O mais importante fator de determinação da resistência é a quantificação do grau de sensibilidade da planta ao herbicida

1 - Observação no campo

Alguns aspecto que podem ser observados no campo que indicam a causa como sendo resistência:

A - Presença de plantas mortas ao lado de plantas vivas

1 – Observação no campo

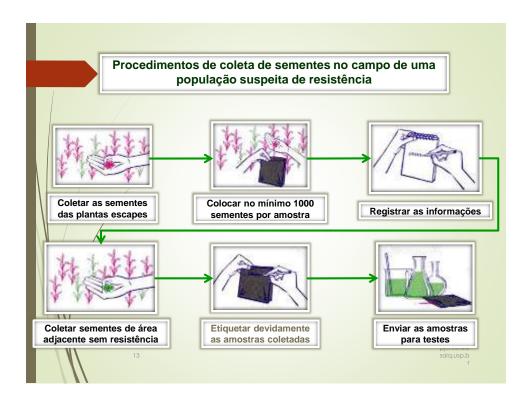
B - Histórico de controle da planta daninha na área

C - Histórico do uso do herbicida na área

D – Ocorrência da resistência nesta planta Daninha na

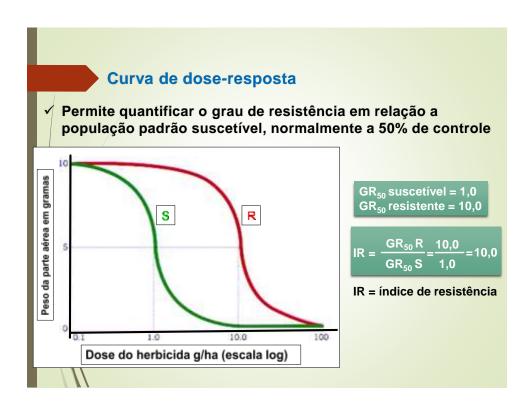
região

2 - Coleta das sementes no campo


Bons resultados somente são obtidos dependendo da qualidade de coleta das sementes no campo:

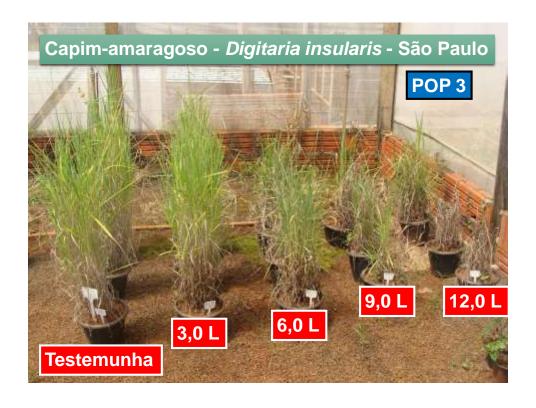
A - Coletar sementes na maturidade

B - Coletar de forma cuidadosa colocando em sacos



3 - Bioensaio com plantas inteiras

- ✓ Avaliação visual da mortalidade e peso verde ou seco da fitomassa
- ✓ Sempre é necessário uma população suscetível para comparação
- ✓ No delineamento do experimento é importante ter assessorial estatística



Quantas doses?

- 6 Mínimo
- 8 Bom
- 10 Excelente

Amplitude das doses

- ✓ Equidistância no eixo X
- ✓ Múltiplas de 2, 4 ou 10
- ✓ Depende da eficácia do herbicida (Controles extremos superiores e inferiores)

Análise dos Dados

- 1. Análise da Variância
 - 1.1. Aplicação do Teste 'F'

FV	GL	SQ	QM	Fc	Pr>Fo
Espécie	1	17.257813	17.257813	0.243	0.6233
Dose	7	155074.742188	22153.534598	311.489	.0000
Espécie*Dose	7	194.929688	27.847098	0.392	0.9055
Bloco	7	8080.367188	1154.338170	16.231	0.0000
erro	105	7467.757813	71.121503		
Total corrigido	127	170835.054688			
CV (%) = Média geral:	13.92 60.58593	7E 276 J-	observações:	128	=====
media gerai:	60.36393	o Numero de	observações:	120	

Dose-resposta

Análise dos Dados

- 1. Análise da Variância
 - 1.1. Aplicação do Teste 'F'

Efeito Significativo?

Não - Fim da Análise!

Sim...

- 2. Qual a natureza dos dados?
 - 2.1. Qualitativos

Comparações: Contrastes, Tukey, Duncan, etc.

2.2. Quantitativos

Regressões (Log-logística)

Dose-resposta

Regressões

- 1. Mais utilizadas:
 - 1.1. Log-Logística

$$y = \frac{a}{\left[1 + \left(\frac{x}{b}\right)^{c}\right]}$$

 $y = Pm\hat{n} + \frac{a}{\left[1 + \left(\frac{x}{b}\right)^{c}\right]}$

Streibig, 1988

Seefeld et al., 1995

y = variável resposta;

a = Pmax - Pmin (amplitude)

x =dose do herbicida (g i.a. ha⁻¹) b =dose p/ 50% de resposta

Pmín = ponto mínimo da curva

c = declividade da curva

Dose-resposta

Regressões

- 1. Mais utilizadas:
 - 1.1. Log-Logística

$$y = \frac{a}{\left[1 + \left(\frac{x}{b}\right)^c\right]}$$

Versão que intercepta x

Dados de Controle e Massa

Streibig, 1988

$$y = Pmin + \frac{a}{\left[1 + \left(\frac{x}{b}\right)^{c}\right]}$$

Versão que não intercepta x

Dados de Massa (Fresca ou Seca)

Seefeldt et al., 1995

Dose-resposta

Regressões

1. Mais utilizadas:

$$y = \frac{a}{\left[1 + \left(\frac{x}{b}\right)^{c}\right]} \quad y = Pmin + \frac{a}{\left[1 + \left(\frac{x}{b}\right)^{c}\right]}$$

- Vantagens:
 - Parâmetros com boa interpretação biológica
 - Estimativa de C₅₀ ou GR₅₀

Equações Inversas para cálculo matemático:

$$x = b * \sqrt{\frac{a}{y} - 1}$$

$$x = b * \sqrt[a]{\frac{a}{y} - 1} \qquad x = b * \sqrt[a]{\frac{a}{(y - Pmin)} - 1}$$

Dose-resposta

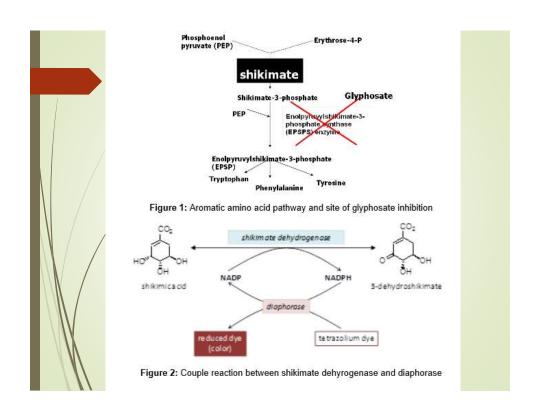
Programas Estatísticos

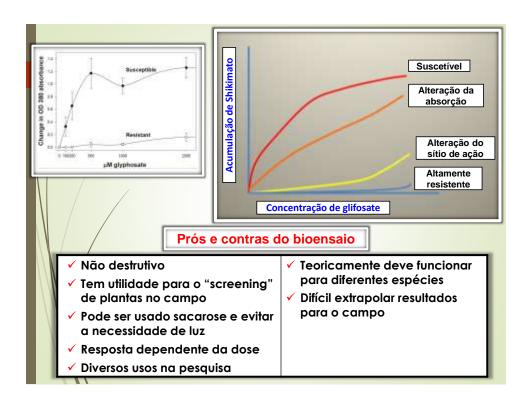
R SAS Sigmaplot **Tablecurve 2D** Labfit **Curve** expert **Excel**

Apresentação dos dados

Figura 1.1 – Curva de dose-resposta para a avaliação visual da porcentagem de controle (C) dos biótipos suscetível e resistente, 28 dias após a aplicação (DAA) de glyphosate no estádio de seedling

Outras técnicas de diagnose


- ✓ Testes em vasos, porém com plantas coletadas no campo.
- ✓ Bioensaio de germinação em Placas de petri
- ✓ Fluorescência da clorofila
- √ Flotação de discos foliares
- √ Bioensaio de atividade de enzimas
- ✓ Teste de discos foliares com a acúmulo de ácido shiquímico


SYNGENTA QUICK-TEST (QT)

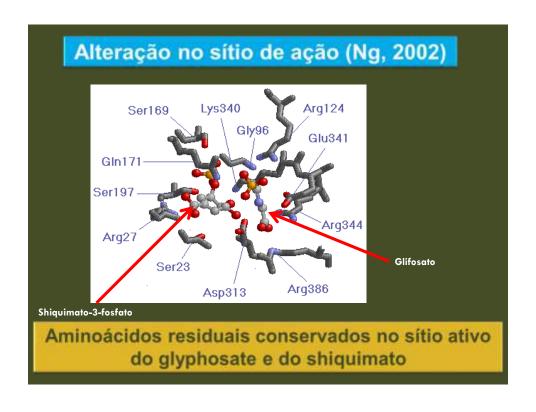
Os mecanismos de resistência ao glyphosate são iguais em magnitude ou probabilidade

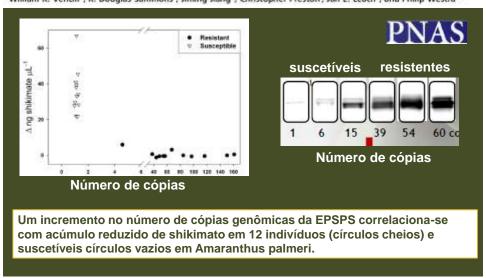
Descobertas recentes sobre os mecanismos de resistência de plantas daninhas ao glifosato

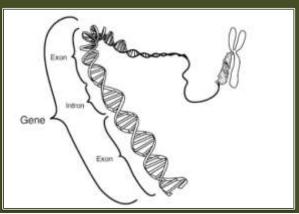
Alteração no sítio de ação (Proline 106)

Translocação

Sequestração


Amplificação gênica



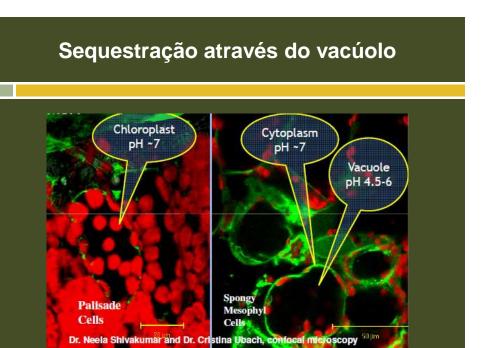

Gene amplification confers glyphosate resistance in Amaranthus palmeri

Todd A. Gaines^{6,1}, Wenli Zhang⁶, Dafu Wang⁶, Bekir Bukun^a, Stephen T. Chisholm^a, Dale L. Shaner^a, Scott J. Nissen^a, William L. Patzoldt⁶, Patrick J. Tranel⁶, A. Stanley Culpepper¹, Timothy L. Grey¹, Theodore M. Webster⁰, William K. Vencill⁵, R. Douglas Sammons⁶, Jiming Jiang⁶, Christopher Preston⁷, Jan E. Leach^a, and Philip Westra^{a,2}

Definição de Introns e exons

Introns são regiões não-codificantes do RNA mensageiro, enquanto os éxons são regiões codificantes do RNA m. Eles estão relacionados a uma etapa muito importante do processo de síntese proteica dos eucariontes, denominada "splicing". Neste processo (cujo nome significa "ato de cortar" em português), regiões específicas do RNA mensageiro (os íntrons) são recortadas e eliminadas.

Número de cópias genômicas medidas usando primers qPCR dentro de um intron é semelhante ao número de cópias medida usando o prime qPCR dentro de um exon de indivíduos R e S


-EPSPS:ALS Relative Genomic Copy Number-

R1	R2	R3	S1	S2	S3	
108 (4.4)	84 (8.6)	60 (0.5)	1.0 (0.06)	0.9 (0.02)	0.9 (0.01)	
106 (1.2)	73 (3.0)	57 (5.1)	0.8 (0.04)	0.9 (0.07)	1.0 (0.07)	
	condumental.	108 (4.4) 84 (8.6)	108 (4.4) 84 (8.6) 60 (0.5)	108 (4.4) 84 (8.6) 60 (0.5) 1.0 (0.06)	108 (4.4) 84 (8.6) 60 (0.5) 1.0 (0.06) 0.9 (0.02)	108 (4.4) 84 (8.6) 60 (0.5) 1.0 (0.06) 0.9 (0.02) 0.9 (0.01)

Data are means with standard errors in parentheses. doi:10.1371/journal.pone.0065819.t001

Gaines TA, Wright AA, Molin WT, Lorentz L, et al. (2013) Identification of Genetic Elements Associated with EPSPS Gene Amplification. PLoS ONE 8(6): e65819. doi:10.1371/journal.pone.0065819 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0065819

Sammons 2010

Sequencia geral para testar se um população é resistente

- 1. Analisar todas as possíveis causas das falhas
- 2. Fazer um levantamento da distribuição no campo
- 3. Coleta de plantas ou sementes da área com problema
- 4. Armazenar as sementes adequadamente
- 5. Fazer um teste de pré-germinação
- 6. Escolher o tipo de ensaio e fazer o delineamento
- 7. Selecionar uma população padrão de suscetibilidade da mesma região
- 8 Análise dos dados e interpretação dos resultados

