CAPITULO 7

Amplificadores Operacionais Aulas 16/17

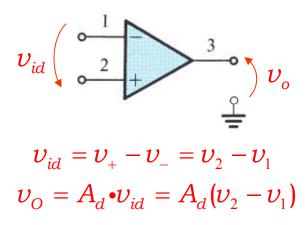
	11ª	Encapsulamento do Amp Op, O Amp Op ideal, Análise de circuitos com Amp Ops ideais. Exemplo 2.2	Cap. 2 p. 38-46 (63-75)
	12ª	Somador, Configuração não inversora, seguidor, amplificador de diferenças. Exercício 2.15	Sedra, Cap. 2 p. 46-53(75-85)
	13ª	Amplificador de instrumentação, Funcionamento dos Amp Ops Não-Ideais. Exemplo 2.3 e 2.4	Sedra, Cap. 2 p. 53-59(85-93)
	14ª	Operação dos Amp Ops em grande excursão de sinal, imperfeições cc, circuitos integrador e diferenciador Exemplo 2.6.	Sedra, Cap. 2 p. 59-73(94-113)
	15 ^a	Fontes de corrente, espelhos de corrente e Circuitos guias de corrente. Exemplo 6.4. Exercício 6.8	Sedra, Cap. 6, p. 353-358 (562-571)
	16ª	Amplificadores diferenciais com MOS: introdução, par diferencial, operação em pequenos sinais do par diferencial, ganho diferencial de tensão. Exercício 7.4	Sedra, Cap. 7 p. 429-436 (688-700)
	17ª	ganho de modo comum, rejeição de modo comum. Exercício 7.5	Sedra, Cap. 7 p. 436-438 (700-704)
2ª. Semana de Provas Data:			-

16^a Aula e 17^a Aula : Amplificadores Diferenciais com Transitores MOS

Ao final desta aula você deverá estar apto a:

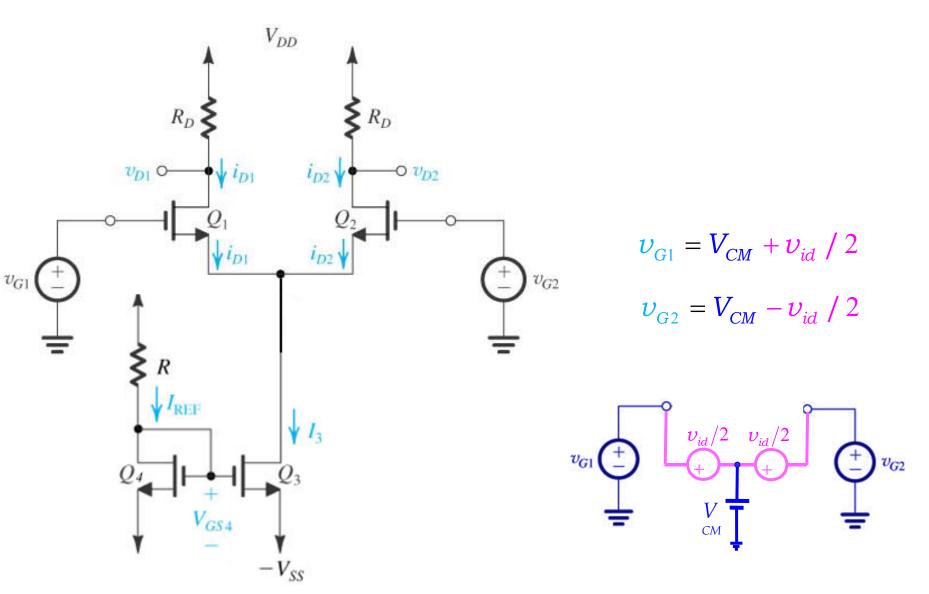
- Explicar como funcionam os circuitos internos de entrada dos AOs (circuitos diferenciais)
- Analisar circuitos diferenciais quando aplicam-se:
 - -Sinais comuns às Entradas
 - -Sinais diferenciais de grande amplitude às Entradas
 - -Sinais diferenciais de pequena amplitude às Entradas
- Explicar analisar um par diferencial utilizando a técnica de separação em meios-circuitos
- Determinar o ganho de modo comum em amplificadores diferenciais
- Explicar as principais causas da existência de ganhos de modo comum não ideais (diferentes de zero)

17^a Aula: Amplificadores Diferenciais e Operacionais Ganho e Rejeição de Modo Comum


Ao final desta aula você deverá estar apto a:

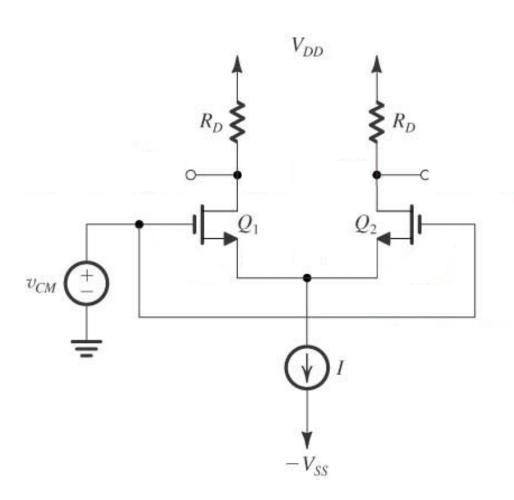
- Explicar analisar um par diferencial utilizando a técnica de separação em meios-circuitos
- Determinar o ganho de modo comum em amplificadores diferenciais
- Explicar as principais causas da existência de ganhos de modo comum não ideais (diferentes de zero)

Amplificadores Operacionais



Como fazer o circuito de entrada do Amp Op???

Queremos amplificar apenas as diferenças Portanto algum tipo de amplificador de diferenças só que construído com transistores (bipolares ou FETs) Denominamos esse circuito de circuito diferencial

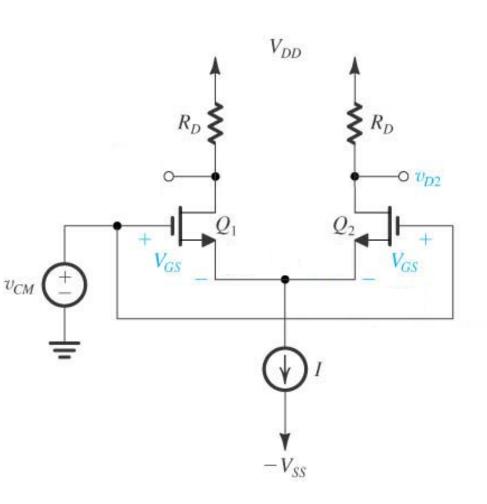


Se Q saturado:

$$v_{DS} \ge v_{GS} - Vt$$

Lembre-se que:

$$V_{OV} \equiv \overline{V}_{GS} - V_t$$


$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) (v_{GS} - V_t)^2$$

$$V_{OV} = \overline{V}_{GS} - V_t = \sqrt{I_D / \frac{1}{2} k_n' \frac{W}{L}}$$

Operação com uma Tensão de Entrada Comum: Faixa de Entrada Comum

Variando-se V_{CM} , o valor de $V_{D1} - V_{D2}$ continua zero!

Quando se aplica um V_{CM} , queremos Q_1 e Q_2 em saturação:

$$\frac{I}{2} = \frac{1}{2} \dot{k_n} \frac{W}{L} (\overline{V}_{GS} - V_t)^2$$

Para garantir Q_1 , Q_2 em saturação:

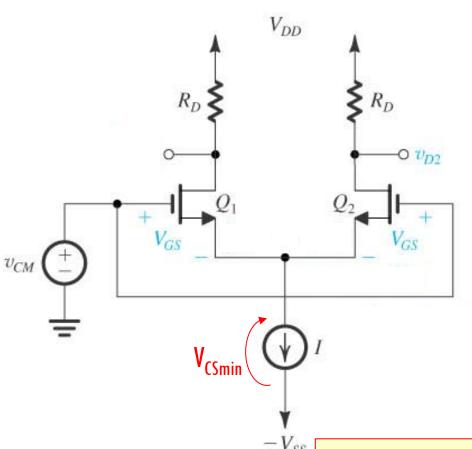
$$\begin{split} & \upsilon_{\scriptscriptstyle S}(0) \leq \upsilon_{\scriptscriptstyle GS} - V_t \leq \upsilon_{\scriptscriptstyle DS} \ (NMOS) \\ & ou \ 0 \leq \upsilon_{\scriptscriptstyle G} - V_t \leq \upsilon_{\scriptscriptstyle D} \end{split}$$

$$\mathbf{Mas} \ v_{CM} = v_{GS} + v_S \rightarrow v_{CM} = v_G \ (\acute{o}bvio!)$$

$$\label{eq:logo} \text{Logo} \quad \upsilon_{\scriptscriptstyle CM} - V_{\scriptscriptstyle t} \leq \upsilon_{\scriptscriptstyle D} \rightarrow \upsilon_{\scriptscriptstyle CM} \leq \upsilon_{\scriptscriptstyle D} + V_{\scriptscriptstyle t}$$

$$\mathbf{Mas} \quad v_D = V_{DD} - R_D \frac{I}{2}$$

$$\mathsf{Logo} \quad \upsilon_{\mathit{CM}} \leq V_{t} + V_{\mathit{DD}} - R_{\mathit{D}} \frac{I}{2}$$


$$v_{CMmax} = V_t + V_{DD} - \frac{I}{2}R_D$$

(senão entra na triodo)

Operação com uma Tensão de Entrada Comum: Faixa de Entrada Comum

Quando se aplica um V_{CM} , temos Q_1 e Q_2 em saturação:

$$\frac{I}{2} = \frac{1}{2} \dot{k_n} \frac{W}{L} (\overline{V}_{GS} - V_t)^2$$

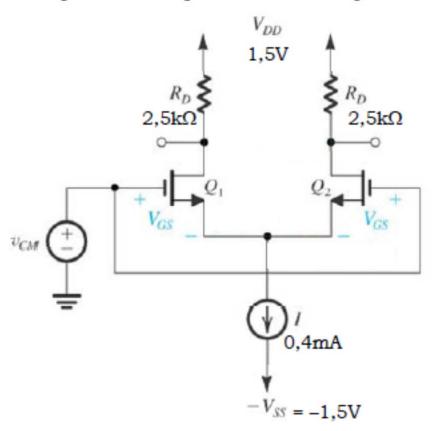
Garantindo um V_{CS} minimo para I operar adequadamente:

$$\downarrow v_{CM} = V_{GS} + \downarrow V_{CS} - V_{SS}$$

$$v_{CM\,\mathrm{min}} = -V_{SS} + V_{CS\,\mathrm{min}} + \overline{V}_{GS}$$

$$v_{CM\min} = -V_{SS} + V_{CS\min} + V_t + (\overline{V}_{GS} - V_t)$$

$$\begin{split} v_{\mathit{CMmax}} &= V_t + V_{\mathit{DD}} - \frac{I}{2} \, R_{\mathit{D}} \quad \text{(senão entra na triodo)} \\ v_{\mathit{CMmin}} &= -V_{\mathit{SS}} + V_{\mathit{CSmin}} + V_t + \left(\overline{V}_{\mathit{GS}} - V_t \right) \, \text{(senão Inão funciona)} \end{split}$$


$$v_{CM\, ext{min}} = -V_{SS} + V_{CS\, ext{min}} + V_t + \left(\overline{V}_{GS} - V_t
ight)$$
 (senão I não funciona)

Exercício 7.1: Para o Amplificador Diferencial com três v_{cm}s distintos aplicados e desprezando o efeito da modulação de canal (r_o), determine:

- Vov (= VGS Vt) e VGS para cada transistor
- para v_{cm}=0 determine v_S, i_{D1}, i_{D2}, v_{D1} e v_{D2}
- idem para v_{cm} = +1 V
- Idem para $v_{cm} = -0.2V$
- qual o valor máximo de v_{cm} para o qual tanto Q_1/Q_2 ainda permanecem em saturação?
- Se a fonte de corrente I precisa de uma tensão mínima de 0,4V para operar adequadamente, qual o menor valor para VS e consequentemente para v_{cm}?

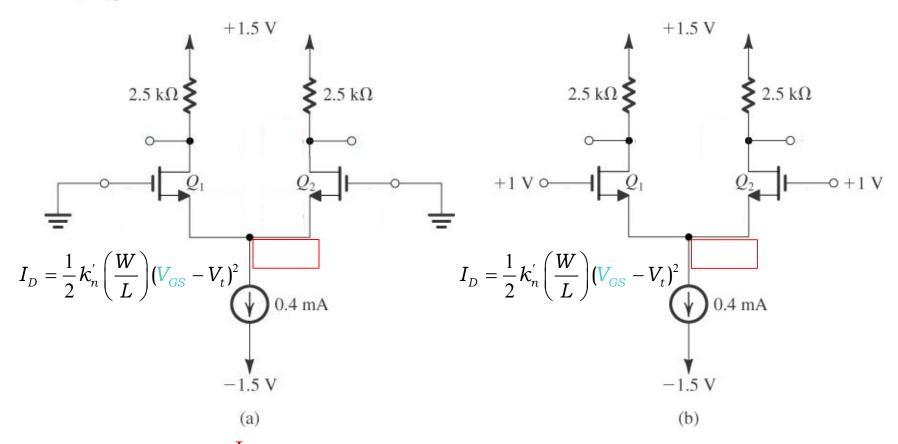
$$V_t = 0.5V$$

$$k_n'(W/L) = 4\text{mA/V}^2$$

$$se \ v_{DS} > v_{GS} - V_t > 0 \text{ (NMOS)}$$

$$I_D = \frac{1}{2}k_n'\left(\frac{W}{L}\right)_1(V_{GS} - V_t)^2$$

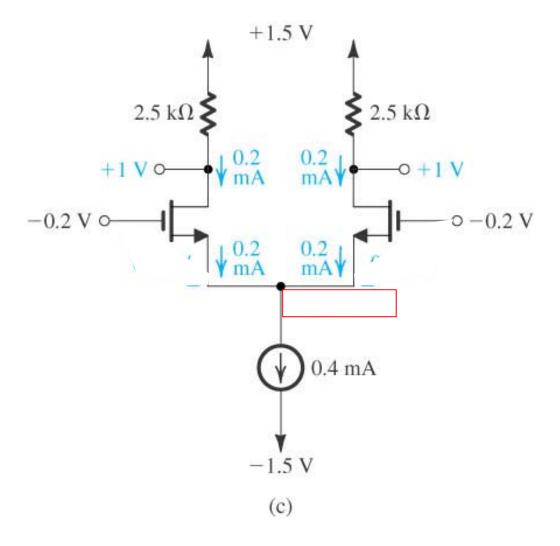
$V_r = 0.5 \text{V}$


Amplificadores Diferenciais

se
$$v_{DS} > v_{GS} - V_t > 0$$
 (NMOS)

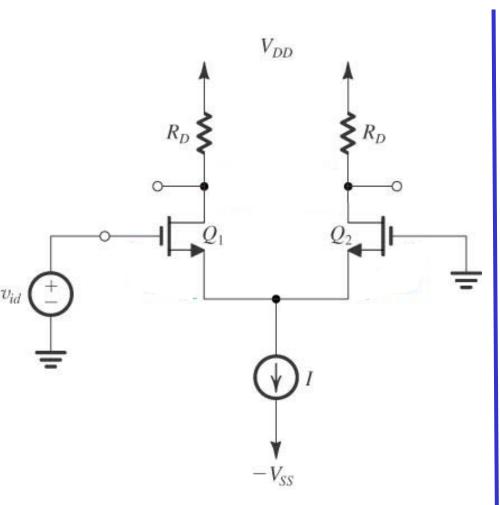
$$I_D = \frac{1}{2} k_n' \left(\frac{W}{L} \right) (V_{GS} - V_t)^2$$

 $k_n'(W/L) = 4mA/V^2$



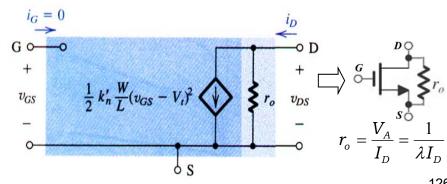
$$v_{CMmax} = V_t + V_{DD} - \frac{1}{2}R_D$$
 (senão entra na triodo) = 0,5 + 1,5 - 0,2m × 2,5k = 1,5V

$$v_{CM \min} = -V_{SS} + V_{CS \min} + V_t + (\overline{V}_{GS} - V_t)$$
 (senão I não funciona) = -1,5 + 0,4 + 0,82 = -0,28V



Amplificadores Diferenciais Operação com Tensão de Entrada Diferencial

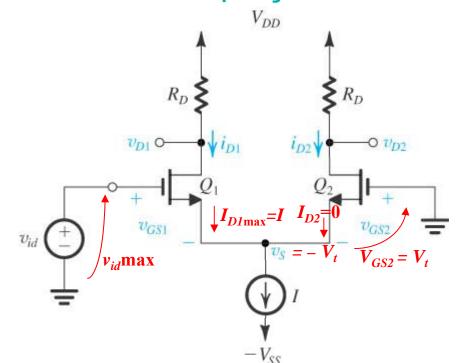
Para Pequenos Sinais (Vid pequeno)


•
$$g_m = \frac{\partial I_{DS}}{\partial V_{GS}} = k'_n \cdot \frac{W}{L} \cdot (\overline{V}_{GS} - V_t)$$

Outras maneiras de expressar $oldsymbol{g}_m$

$$\bullet g_{\rm m} = \frac{2I_D}{\overline{V}_{GS} - V_t} = \frac{I}{V_{OV}}$$

•
$$g_m = \sqrt{2k'_n} . \sqrt{\frac{W}{L}} . \sqrt{I_D} = \sqrt{I \times k'_n} \frac{W}{L}$$


Modelo para Pequenos Sinais

Operação com uma Tensão de Entrada Diferencial

$$Se v_{id} > 0; (v_{D2} - v_{D1}) > 0$$

 $v_{id} = v_{GS1} - v_{GS2}$

Qual v_{id} faz I circular toda por um dos transistores?

Nessa situação
$$I_{D1} = \frac{1}{2} k_n \frac{W}{L} (v_{GS1} - V_t)^2 = I$$
, ou, ou $v_{GS1_{max}} = V_t + \sqrt{2I/k_n(W/L)}$

Como amplificador linear:
$$p/\operatorname{peq.sinais} v_{gs} \ll 2V_{OV} \rightarrow v_{gs} \ll 2(\overline{V}_{GS} - V_t)$$

$$(v_{gs1} - v_{gs2}) / 2 \ll \overline{V}_{GS} - V_t \rightarrow v_{id} / 2 \ll \overline{V}_{GS} - V_t$$

$$p/\operatorname{peq.sinais:} + \Delta i = +g_m \Delta v_{gs} = +g_m \Delta v_{id}$$

$$+ \Delta v_{id} \rightarrow +\Delta i \rightarrow i_D = I / 2 + \Delta i \rightarrow \Delta v_D = -\Delta i.R_D$$

$$-\Delta v_{id} \rightarrow -\Delta i \rightarrow i_D = I / 2 - \Delta i \rightarrow \Delta v_D = +\Delta i.R_D$$

 $v_{O} = v_{D2} - v_{D1} = +2\Delta i.R_{D}$

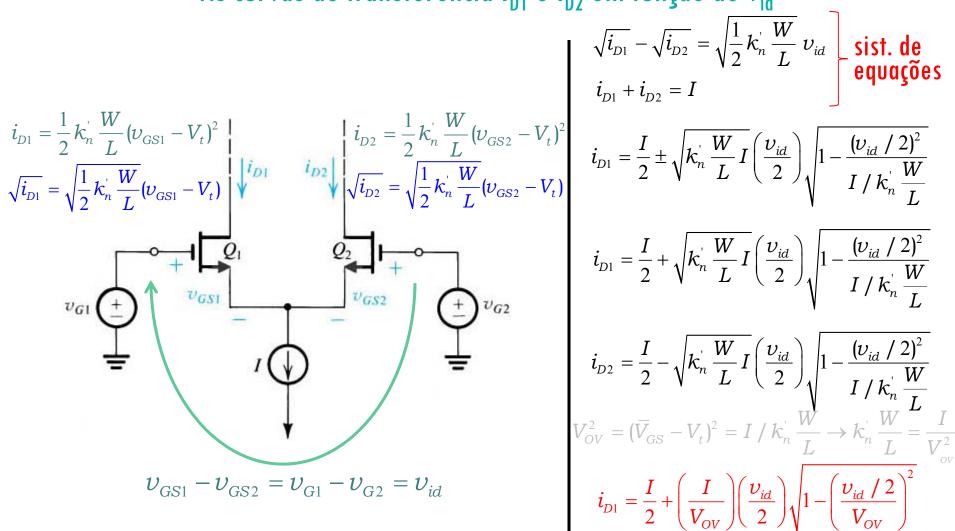
Nessa condição
$$v_{id\max} = v_{GS1\max} + v_S$$

$$v_{id\max} = v_{GS1\max} - V_t$$

$$v_{id\max} = V_t + \sqrt{2I/k_n(W/L)} - V_t$$

$$v_{id\max} = \sqrt{2I/k_n(W/L)}$$

$$como \frac{I}{2} = \frac{1}{2}k_n \frac{W}{L}(\bar{V}_{GS} - V_t)^2 \rightarrow v_{id\max} = \sqrt{2}(\bar{V}_{GS} - V_t)$$

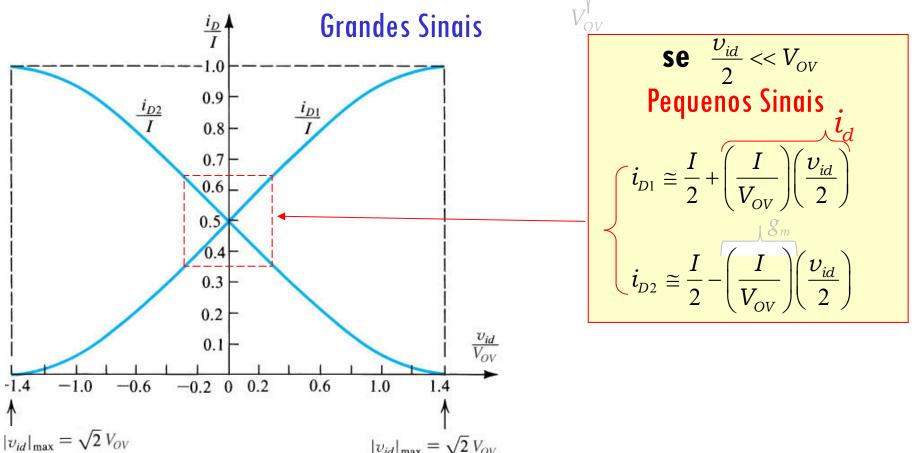

limites extremos

$$-\sqrt{2}(\bar{V}_{GS}-V_{t}) \leq v_{id} \leq \sqrt{2}(\bar{V}_{GS}-V_{t})^{127}$$

As curvas de transferência I_{D1} e I_{D2} em função de v_{id}

limites extremos

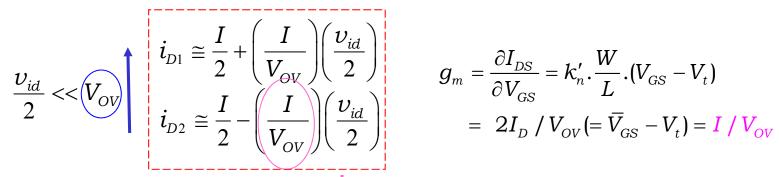
$$-\sqrt{2}(\overline{V}_{GS}-V_t) \leq v_{id} \leq \sqrt{2}(\overline{V}_{GS}-V_t)$$

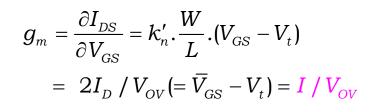


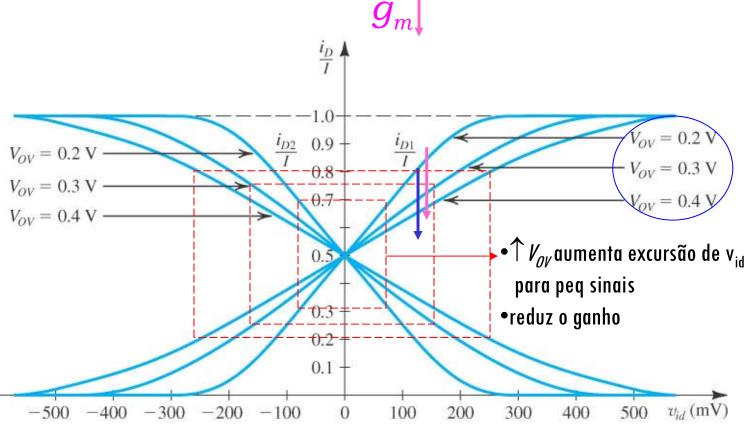
$$\frac{i_{D2}}{I} = \frac{1}{2} - \left(\frac{1}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{V_{OV}^2}} \qquad \frac{i_{D1}}{I} = \frac{1}{2} + \left(\frac{1}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{V_{OV}^2}}$$

$$\frac{i_{D1}}{I} = \frac{1}{2} + \left(\frac{1}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{V_{OV}^2}}$$

limites extremos: $-\sqrt{2}(\overline{V}_{GS}-V_t) \leq v_{id} \leq \sqrt{2}(\overline{V}_{GS}-V_t)$




 $|v_{id}|_{\text{max}} = \sqrt{2} V_{OV}$



Amplificadores Diferenciais Grandes Sinais

Amplificadores Diferenciais Resumo

$$\frac{i_{D1}}{I} = \frac{1}{2} + \left(\frac{1}{V_{OV}}\right) \left(\frac{\upsilon_{id}}{2}\right) \sqrt{1 - \left(\frac{\upsilon_{id}}{2}\right)^2} \qquad \frac{i_{D2}}{I} = \frac{1}{2} - \left(\frac{1}{V_{OV}}\right) \left(\frac{\upsilon_{id}}{2}\right) \sqrt{1 - \left(\frac{\upsilon_{id}}{2}\right)^2}$$

$$\frac{i_D}{I} \qquad 0.9 \qquad \qquad \frac{i_{D1}}{I} \qquad 0.8 \qquad \qquad \frac{i_{D1}}{I} \qquad 0.8 \qquad \qquad \frac{i_{D1}}{I} \qquad 0.8 \qquad \qquad \frac{\upsilon_{id}}{I} \qquad 0.8 \qquad 0.8 \qquad \qquad \frac{\upsilon_{id}}{I} \qquad 0.8 \qquad 0.8 \qquad \qquad \frac{\upsilon_{id}}{I} \qquad 0.8 \qquad \qquad \frac{\upsilon_{id}}{I} \qquad 0.8 \qquad \qquad \frac{\upsilon_{id}}{I} \qquad 0.8 \qquad$$

$$i_{D1} \approx \frac{I}{2} + \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) i_{d}$$

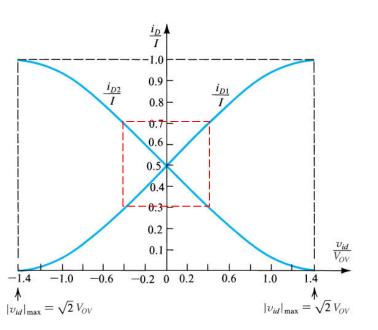
$$i_{D2} \approx \frac{I}{2} - \left(\frac{I}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right)$$

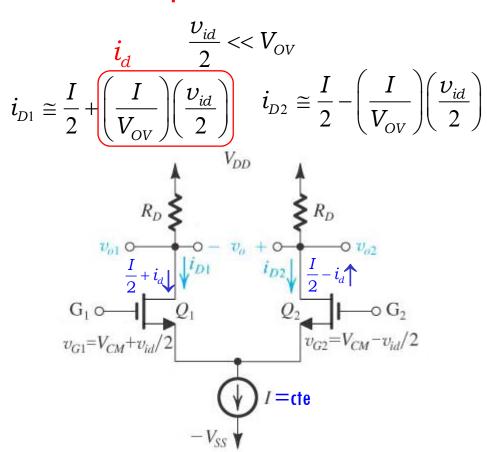
$$i_{d} = \left(\frac{I}{V_{OV}}\right) \frac{v_{id}}{2}$$

$$g_{m} = \frac{\partial I_{DS}}{\partial V_{GS}} = \frac{1}{2} k'_{n} \cdot \frac{W}{L} \cdot (V_{GS} - V_{t})^{2} = \frac{2I_{D}}{V_{OV}} = \frac{I}{V_{OV}}$$

$$i_{d} = g_{m} \frac{v_{id}}{2}$$

limites extremos:
$$-\sqrt{2}(\overline{V}_{GS}-V_t) \leq v_{id} \leq \sqrt{2}(\overline{V}_{GS}-V_t)$$

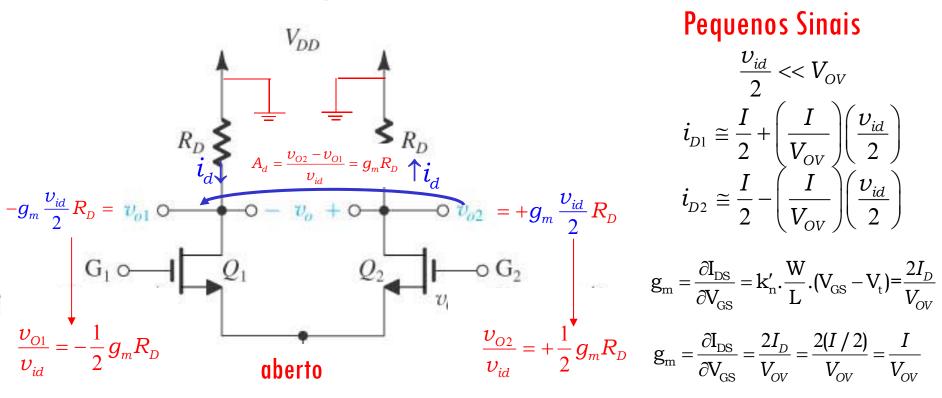



Grandes Sinais

$$\frac{i_{D1}}{I} = \frac{1}{2} + \left(\frac{1}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{V_{OV}^2}}$$

$$\frac{i_{D2}}{I} = \frac{1}{2} - \left(\frac{1}{V_{OV}}\right) \left(\frac{v_{id}}{2}\right) \sqrt{1 - \frac{(v_{id}/2)^2}{V_{OV}^2}}$$

Pequenos Sinais


$$i_d = \left(\frac{I}{V_{OV}}\right) \frac{v_{id}}{2}$$
 $g_m = \frac{I}{V_{OV}}$

$$i_d = g_m \frac{v_{id}}{2}$$

Amplificadores Diferenciais **Pequenos Sinais: Ganho Diferencial**

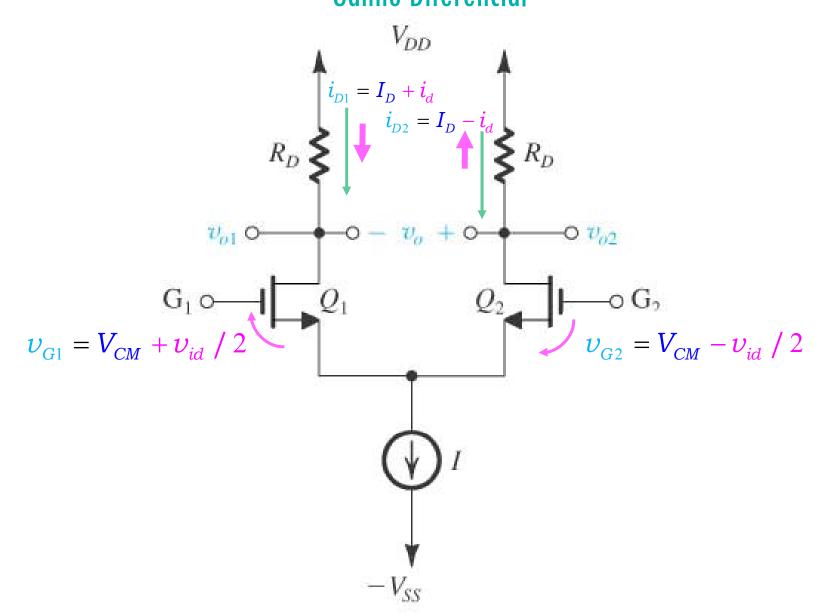
Pequenos Sinais

$$\frac{\upsilon_{id}}{2} << V_{OV}$$

$$i_{D1} \cong \frac{I}{2} + \left(\frac{I}{V_{OV}}\right) \left(\frac{\upsilon_{id}}{2}\right)$$

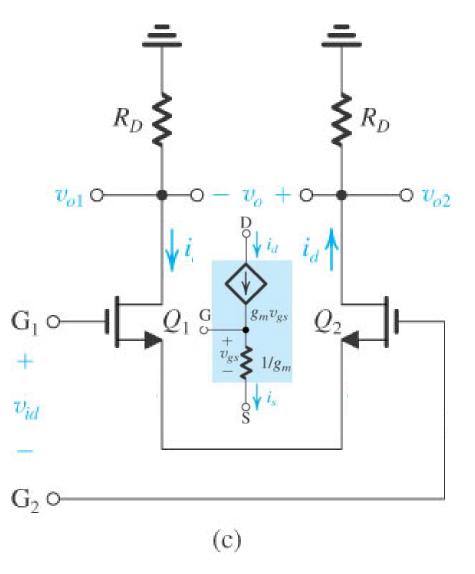
$$i_{D2} \cong \frac{I}{2} - \left(\frac{I}{V_{OV}}\right) \left(\frac{\upsilon_{id}}{2}\right)$$

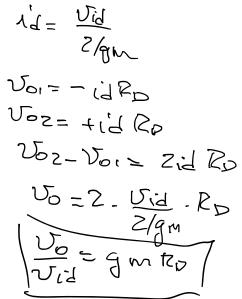
$$g_{m} = \frac{\partial I_{DS}}{\partial V_{GS}} = k'_{n} \cdot \frac{W}{L} \cdot (V_{GS} - V_{t}) = \frac{2I_{D}}{V_{OV}}$$


$$g_{\rm m} = \frac{\partial I_{\rm DS}}{\partial V_{\rm GS}} = \frac{2I_D}{V_{OV}} = \frac{2(I/2)}{V_{OV}} = \frac{I}{V_{OV}}$$

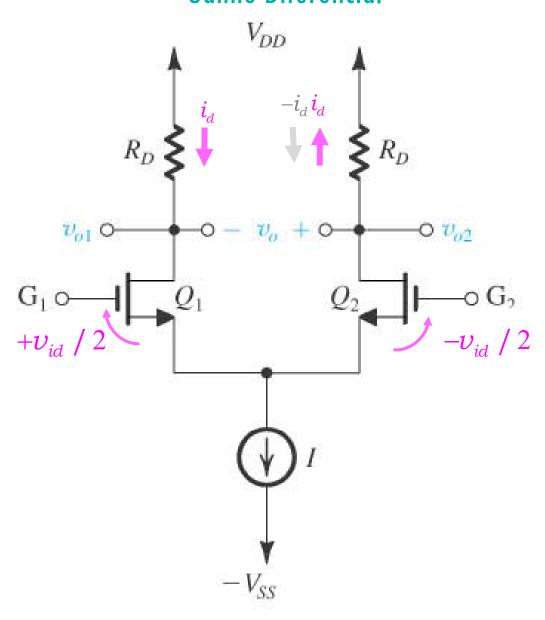
$$egin{align} egin{align} \dot{i}_{D1} &\cong rac{I}{2} + g_m \left(rac{
u_{id}}{2}
ight) \ \dot{i}_{D2} &\cong rac{I}{2} - g_m \left(rac{
u_{id}}{2}
ight) \ \end{matrix}$$

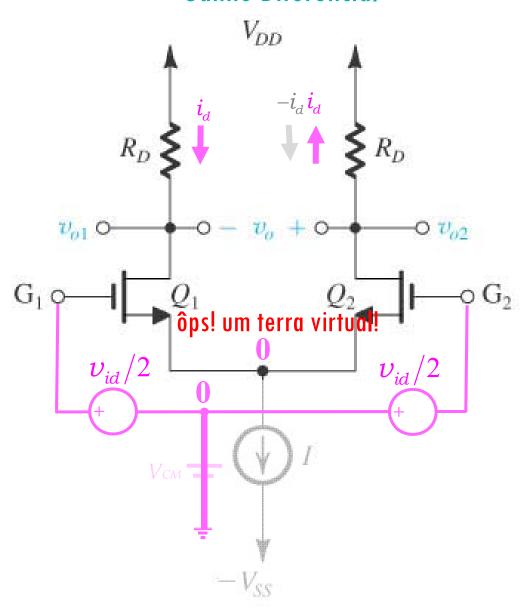
$$A_d = \frac{\upsilon_{O2} - \upsilon_{O1}}{\upsilon_{id}} = g_m R_I$$

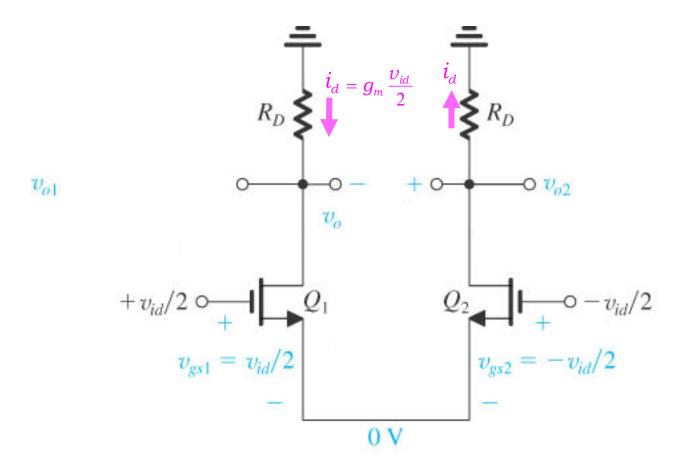




Amplificadores Diferenciais Ganho Diferencial — Dedução Alternativa



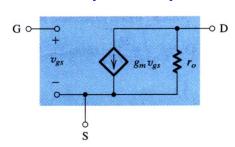


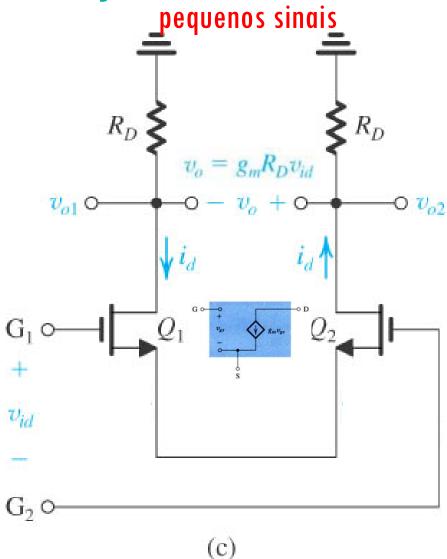


Ganho Diferencial — Dedução Alternativa

Para Pequenos Sinais (Vid pequeno)

•
$$g_m = \frac{\partial I_{DS}}{\partial V_{GS}} = k'_n \cdot \frac{W}{L} \cdot (V_{GS} - V_t)$$

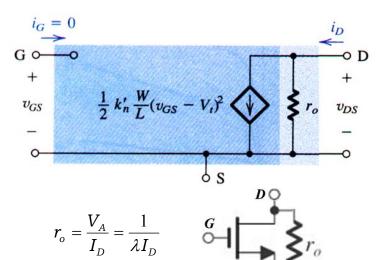

Outras maneiras de expressar g_m

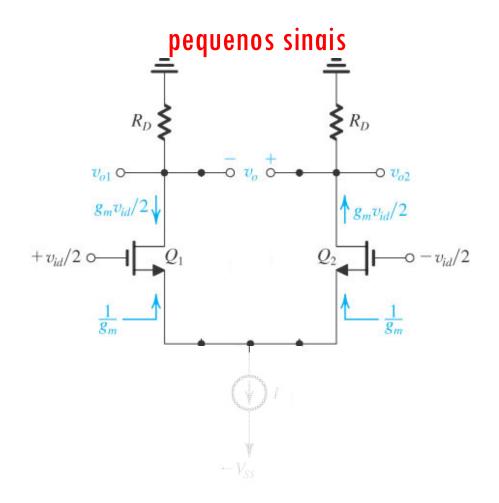

•
$$g_m = \frac{2I_D}{V_{GS} - V_t}$$
 Valores CC!!!

•
$$g_m = \sqrt{2k'_n}.\sqrt{\frac{W}{L}}.\sqrt{I_D}$$

$$r_o \cong \frac{V_A}{I_D}$$

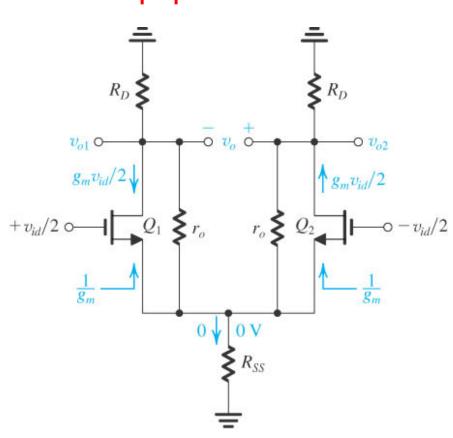
Modelo para Pequenos Sinais

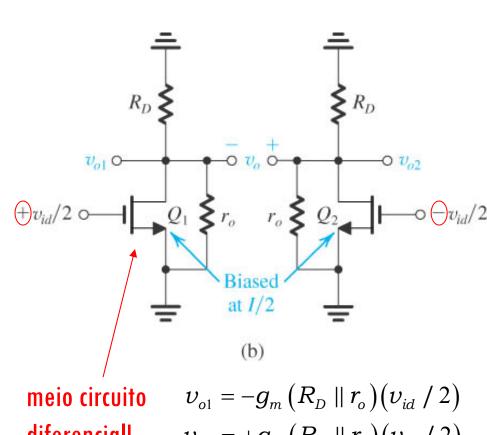



Amplificadores Diferenciais Efeito de r_o dos MOSFETs

No MOS considerando ro:

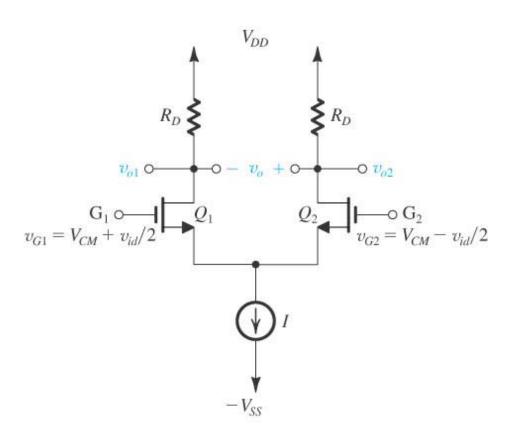
$$i_{D} = \frac{1}{2} k_{n}' \frac{W}{L} \left(\nu_{GS} - V_{t} \right)^{2} \left(1 + \lambda V_{DS} \right)$$





Amplificadores Diferenciais Efeito de r_n dos MOSFETs

pequenos sinais



Amplificadores Diferenciais Exercício 7.4

Exe 7.4: Um par diferencial MOS está operando com uma corrente total de 0,8mA, utilizando transistores com razão W/L de 100, kn'= 0,2 mA/V², V_A = 20V e R_D = 5k Ω . Determine V_{OV} , g_m , r_o e A_d .

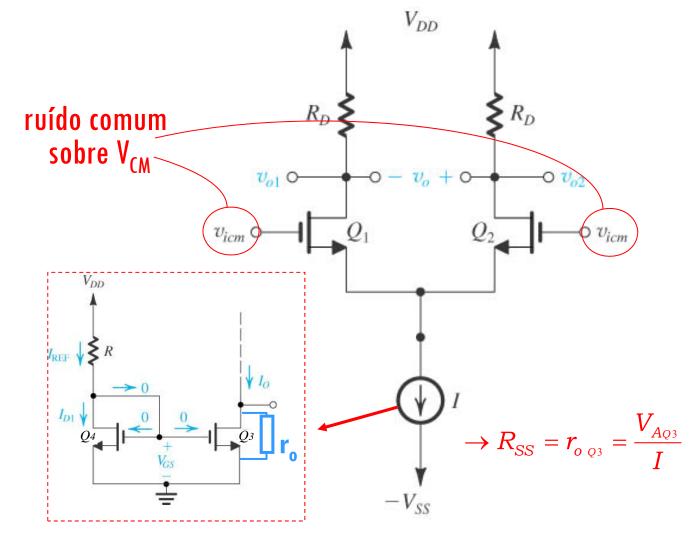
Está feito no vídeo!!!

CAPITULO 2

Amplificadores Operacionais Aula 17

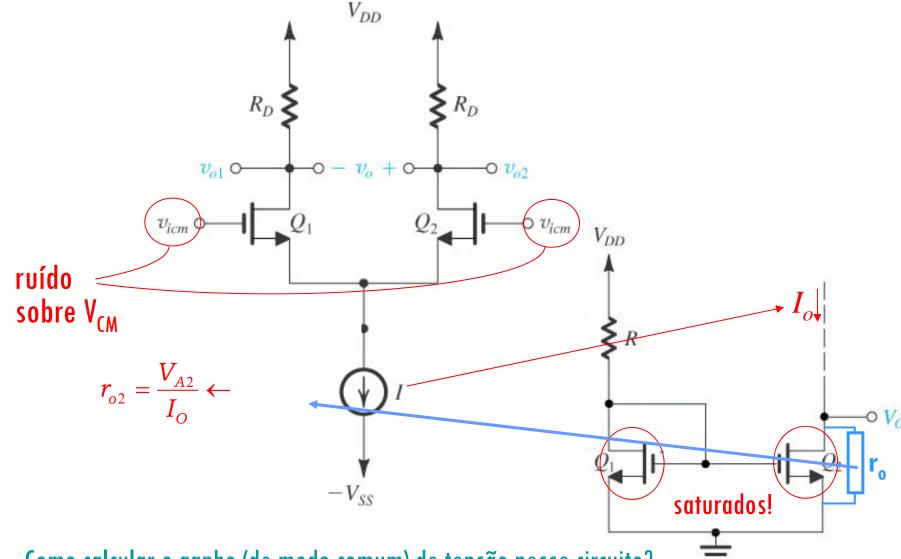
11 ^a	Encapsulamento do Amp Op, O Amp Op ideal, Análise de circuitos com Amp Ops ideais. Exemplo 2.2	Cap. 2 p. 38-46 (63-75)	
12ª	Somador, Configuração não inversora, seguidor, amplificador de diferenças. Exercício 2.15	Sedra, Cap. 2 p. 46-53(75-85)	
13ª	Amplificador de instrumentação, Funcionamento dos Amp Ops Não-Ideais. Exemplo 2.3 e 2.4	Sedra, Cap. 2 p. 53-59(85-93)	
14 ^a	Operação dos Amp Ops em grande excursão de sinal, imperfeições cc, circuitos integrador e diferenciador Exemplo 2.6.	Sedra, Cap. 2 p. 59-73(94-113)	
15ª	Fontes de corrente, espelhos de corrente e Circuitos guias de corrente. Exemplo 6.4. Exercício 6.8	Sedra, Cap. 6, p. 353-358 (562-571)	
16ª	Amplificadores diferenciais com MOS: introdução, par diferencial, operação em pequenos sinais do par diferencial, ganho diferencial de tensão. Exercício 7.4	Sedra, Cap. 7 p. 429-436 (688-700)	
17ª	ganho de modo comum, rejeição de modo comum. Exercício 7.5	Sedra, Cap. 7 p. 436-438 (700-704)	
2ª. Semana de Provas Data:			

17^a Aula: Amplificadores Diferenciais e Operacionais Ganho e Rejeição de Modo Comum


Ao final desta aula você deverá estar apto a:

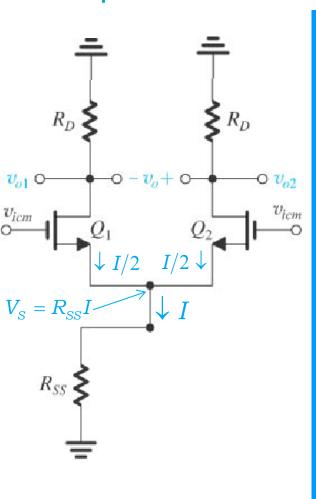
- Explicar analisar um par diferencial utilizando a técnica de separação em meios-circuitos
- Determinar o ganho de modo comum em amplificadores diferenciais
- Explicar as principais causas da existência de ganhos de modo comum não ideais (diferentes de zero)

Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR)

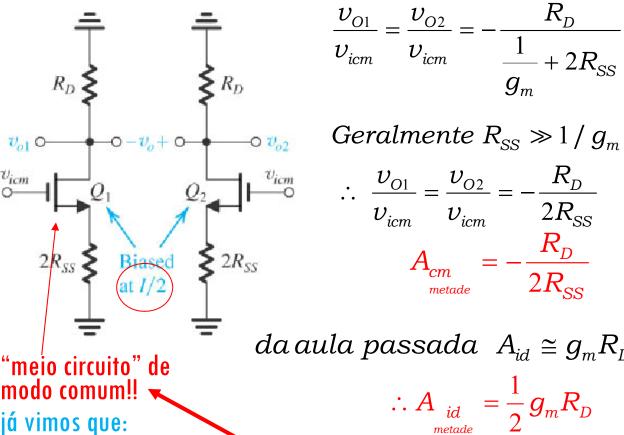

Como calcular o ganho (de modo comum) de tensão nesse circuito?

$$A_{cm}_{do par dif} = \frac{v_{O2} - v_{O1}}{v_{icm}} = 0$$

Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR)


Como calcular o ganho (de modo comum) de tensão nesse circuito?

Levar em conta as não idealidades! I, RD e gm



Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR) para a Saída entre Dreno Individual e Terra: Efeito de I não ideal

Circuito Equivalente:

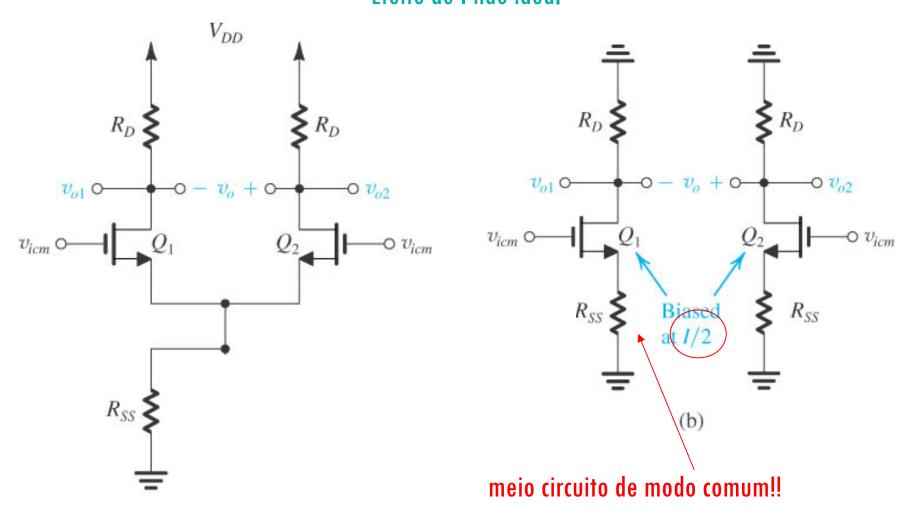
Geralmente
$$R_{SS} \gg 1/g_m$$

$$\therefore \frac{v_{O1}}{v_{icm}} = \frac{v_{O2}}{v_{icm}} = -\frac{R_D}{2R_{SS}}$$

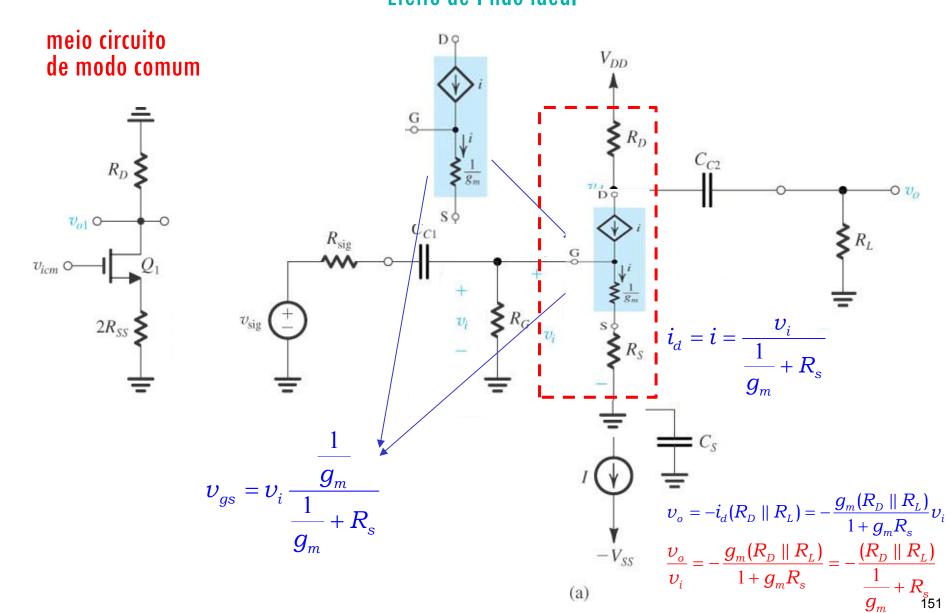
$$R_D$$

da aula passada $A_{id} \cong g_m R_D$

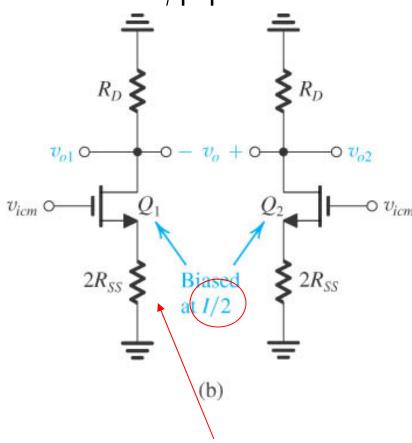
$$\therefore A_{\underset{metade}{id}} = \frac{1}{2} g_m R_D$$


$$\therefore CMRR \equiv \left| \frac{A_d}{A_{cm}} \right| = g_m R_{SS}$$
"meio circuito" $\left| \frac{A_d}{A_{cm}} \right|$

Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR)


Efeito de I não ideal

Considerando Rss: O Amplificador FC com Resistência de Fonte Efeito de I não ideal



Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR)

Efeito de I não ideal considerando a Saída entre Dreno Individual e Terra (meio par diferencial)

Análise ca / pequenos sinais

meio circuito de modo comum!!

Da comparação com Amp FC com Rs:

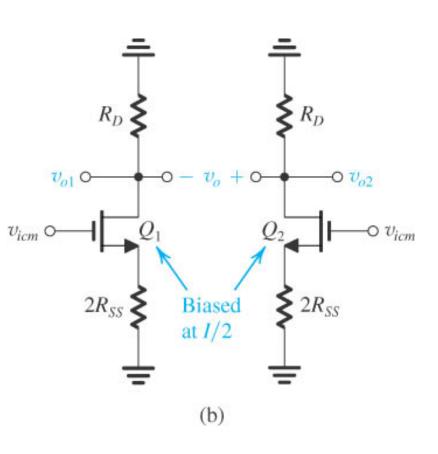
$$\frac{v_{O1}}{v_{icm}} = \frac{v_{O2}}{v_{icm}} = -\frac{R_D || R_L}{\frac{1}{g_m} + 2R_{SS} (= R_S)}$$

Geralmente $R_{SS} \gg 1/g_m$

$$\therefore \frac{v_{\rm O1}}{v_{\rm icm}} = \frac{v_{\rm O2}}{v_{\rm icm}} = A_{\rm cm}_{\rm meio-circuito} = -\frac{R_{\rm D}}{2R_{\rm SS}}$$

Já vimos que (ganho Ad):

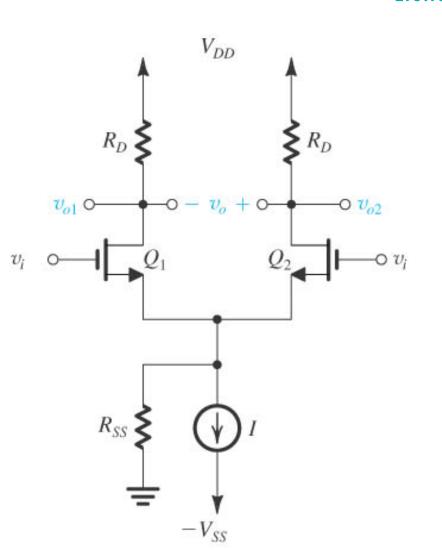
$$v_O = +g_m (R_D || r_o) v_{id} \rightarrow A_d \cong g_m R_D$$


$$\therefore A_d = \frac{1}{2} g_m R_D$$

$$\therefore CMRR_{meio-circuito} \equiv \left| \frac{A_d}{A_{cm}} \right| = g_m R_{SS}$$

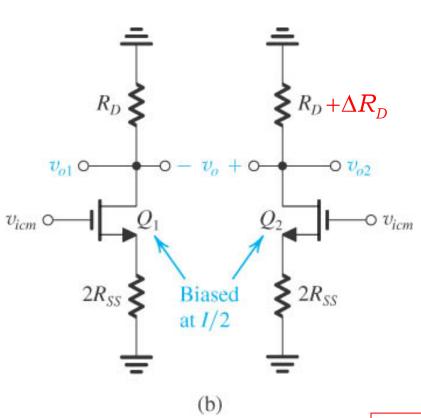
Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR) Para a Saída entre os Dois Drenos (par diferencial): Efeito de I não ideal

$$A_{cm}_{do par dif} = \frac{v_{O2} - v_{O1}}{v_{icm}} = 0$$


$$A_{d\atop do\ par\ dif} = \frac{v_{O2} - v_{O1}}{v_{id}} = g_m R_D$$

$$\begin{array}{ll} \therefore CMRR_{do~par} &= \infty \\ & \text{diferencial} \\ & \text{se I não ideal} \end{array}$$

Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR) Efeito de I não ideal


$$egin{align*} A_{cm} &= rac{v_{O1}}{v_{icm}} = -rac{R_D}{2R_{SS}} & A_{d} &= rac{v_{O1}}{v_{id}} = rac{1}{2} \, g_m R_D \ & CMRR_{meio-circuito} &\equiv \left| rac{A_d}{A_{cm}}
ight| = g_m R_{SS} \ \end{aligned}$$

$$CMRR_{do~par} = \infty$$
 $diferencial$
 $se~I~n\~ao~ideal$

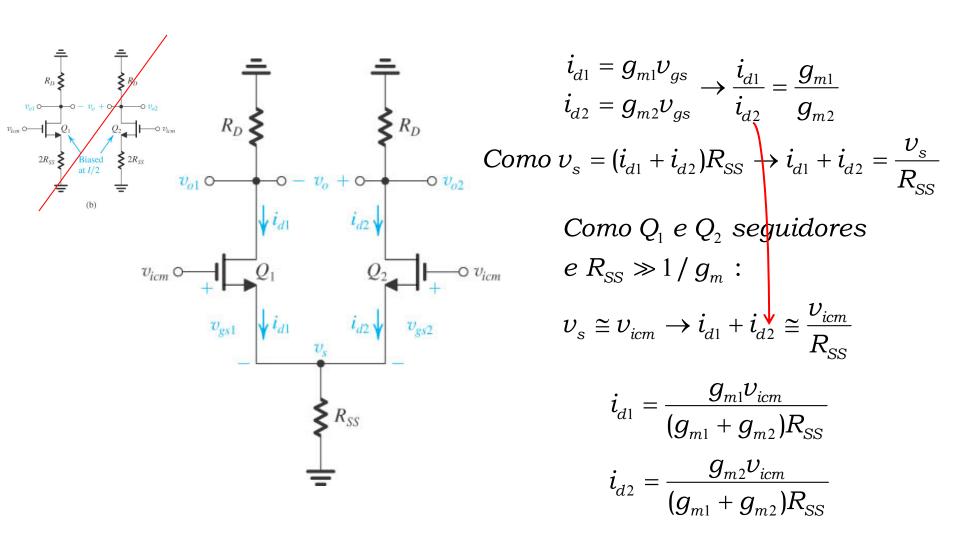
Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR) Efeito do descasamento de R_D: para a Saída entre os Dois Drenos (par diferencial)

$$Se \ R_{\rm SS} \gg 1 / g_{m}$$

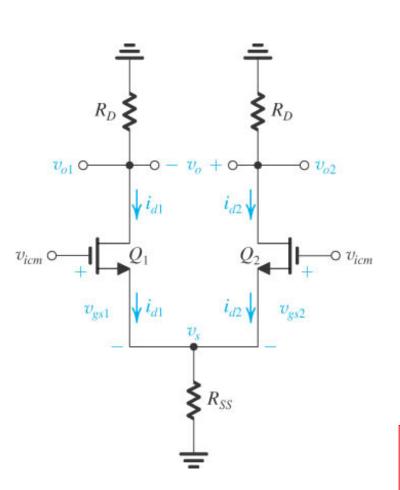
$$v_{\rm O1} = -\frac{R_{D}}{2R_{\rm SS}} v_{i} \rightarrow v_{\rm O1} = -\frac{R_{D}}{2R_{\rm SS}} v_{icm}$$

$$v_{\rm O2} = -\frac{R_{D} + \Delta R_{D}}{2R_{\rm SS}} v_{icm}$$

$$A_{cm} = \frac{v_{\rm O2} - v_{\rm O1}}{v_{icm}} = -\frac{\Delta R_{D}}{2R_{\rm SS}}$$


Considerando o efeito de ΔR_D desprezível em A_d :

$$A_d = rac{v_{O2} - v_{O1}}{v_{id}} \cong -g_m R_D$$
 $CMRR_{\substack{do\ par\ diferencial\ se\ h\'a\ \Delta R_D}} = \left|rac{A_d}{A_{cm}}
ight| = rac{(2g_m R_{SS})}{rac{\Delta R_D}{R_D}}$


Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR) Efeito do descasamento de g_m : para a Saída entre os Dois Drenos (par diferencial)

Ganho de Modo Comum e Relação de Rejeição de Modo Comum (CMRR) Efeito do descasamento de g_m : para a Saída entre os Dois Drenos (par diferencial)

$$i_{d1} = \frac{g_{m1}v_{icm}}{(g_{m1} + g_{m2})R_{SS}}$$

$$i_{d2} = \frac{g_{m2}v_{icm}}{(g_{m1} + g_{m2})R_{SS}}$$

$$i_{d1} = \frac{g_{m2}v_{icm}}{(g_{m1} + g_{m2})R_{SS}}$$

$$i_{d2} = \frac{g_{m2}v_{icm}}{(g_{m1} + g_{m2})R_{SS}}$$

$$i_{d1} = \frac{g_{m1}v_{icm}}{2g_{m}R_{SS}} e \quad i_{d2} = \frac{g_{m2}v_{icm}}{2g_{m}R_{SS}}$$

$$v_{o2} - v_{o1} = -i_{d2}R_{D} + i_{d1}R_{D} = R_{D} \frac{\Delta g_{m}v_{icm}}{2g_{m}R_{SS}}$$

$$A_{cm} = \left(\frac{R_{D}}{2R_{SS}}\right)\left(\frac{\Delta g_{m}}{g_{m}}\right) e \quad A_{d} \cong -g_{m}R_{D}$$

$$\therefore CMRR = 20 \log \left| \frac{A_d}{A_{cm}} \right| = 20 \log \left[\frac{(2g_m R_{SS})}{\underline{\Delta g_m}} \right]$$