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SOME ASPECTS OF 

THREE-DIMENSIONAL TONNETZE 

Edward Gollin 

This paper explores how a three-dimensional (3-D) Tonnetz enables 
an interesting spatial representation of tetrachords and the contextual 
transformations among them. The geometry of the Tonnetz, a function of 
its set-class structure, emphasizes certain operations within a larger 
group of transformations based on their common-tone retention proper- 
ties. 

After reviewing some features of the traditional two-dimensional (2- 
D) Tonnetz, we will explore features of a 3-D Tonnetz based on the famil- 
iar dominant-seventh/Tristan tetrachord [0258]. We will then generalize 
the 3-D Tonnetz to accommodate relations among members of any tetra- 
chord class. Lastly, we will investigate the relation of a Tonnetz's geom- 
etry to the group structure of the transforms relating its elements. 

The Two-dimensional Tonnetz 

The traditional Tonnetz (as manifest in the nineteenth-century writ- 
ings and theories of Oettingen, Riemann, et al.) is an array of pitches on 
a (potentially infinite) Euclidean plane.' Figure la illustrates a region of 
a traditional 2-D Tonnetz. We may summarize several of its essential 
aspects as follows: 
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1) Pitches are arranged along two independent axes (not necessarily 
orthogonal), arranged intervallically by perfect fifth on one axis 
and by major third on the other (See Figure lb).2 

2) The triangular regions whose vertices are defined by some given 
pitch and those either a perfect fifth and major third above or a per- 
fect fifth and major third below correspond to some triad, either the 
Ober- or Unterklang respectively of that given pitch. 

3) The edges of the triangular regions correspond to the intervals 
within the triad. Only two of these lie along axes of the array; the 
third edge may be defined as a secondary feature resulting from the 
combination of the primary axes. 

4) The dual structure of major and minor triads is visually manifest 
within the Tonnetz. Triangles representing major triads are oriented 
oppositely from those representing minor triads. 

5) Triangles/triads adjacent to any given triangle/triad share two com- 
mon tones if they share a common edge, or one common tone if 
they share a common vertex. 

Three particular operations acting on triads, L, P and R (for Leitton- 
wechsel or Leading-tone exchange, Parallel, and Relative) which maxi- 
mize common-tone retention, occupy a privileged position on the Ton- 
netz: they are representable as 'edge-flips' among adjacent triangles/ 
triads.3 Arrows in Figure la illustrate the mappings of L, P and R about 
a C-major triad. 

Several nineteenth-century assumptions underlying the traditional 2-D 
Tonnetz are not obligatory. For instance, if one assumes an arrangement 
of equally-tempered pitch classes (rather than just-intoned pitches), the 
Tonnetz would be situated not in an infinite Cartesian plane, but on the 
closed, unbounded surface of a torus.4 Richard Cohn (1997) and David 
Lewin (1996) have demonstrated that the Tonnetz need not represent rela- 
tions merely among triads, but may do so among members of any tri- 
chordal set class; Cohn (1997) has further shown the extension of the Ton- 
netz in chromatic cardinalities other than c= 12.5 Further, one need not 
adhere to the restriction of representing trichords in two dimensions, but 
may extend the Tonnetz in three dimensions to accommodate relations 
among tetrachords.6 

An [0258] Tonnetz 

Figure 2 illustrates a portion of a 3-D Tonnetz, consisting not of points 
on a plane but of points (representing pitch classes) in a space lattice. 
Whereas two axes were sufficient to locate points in the 2-D Tonnetz, the 
additional degree of freedom in three dimensions requires an additional 
axis to describe the location of all points. I have chosen axes of a non- 
orthogonal coordinate system in Figure 2 (interaxial angles are all 60?), 
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(a) A region of traditional 2-D Tonnetz and three contextual inversions 
(sharing a common edge) with a C-major triad 

/M3 axis 

P5 axis 
(b) The axis system of the traditional 2-D Tonnetz 

Figure 1 

and have labeled these a, b, and c (avoiding labels x, y, and z to distin- 
guish my axes from those of the Cartesian coordinate system). Axes are 
labeled according to a right-handed convention (right thumb points in a 
positive direction along the a-axis, right index finger in a positive direc- 
tion along the b-axis, middle finger in a positive direction along the c- 
axis). Points within the lattice are arranged at unit distances in positive 
and negative directions along the axes from all other points. The regular 
arrangement of points in this Tonnetz constitutes one of two uniform 
ways of filling space with spheres-crystallographers refer to this ar- 
rangement as cubic closest packing (ccp).7 

Throughout this discussion, we will assume equal temperament. Do- 
ing so induces a modular geometry to the 3-D Tonnetz-the Tonnetz 
occupies the closed, unbounded volume of a hyper-torus in 4-dimen- 
sional space. Units in a positive direction along the a-axis correspond to 
the musical interval of 4 semitones, units in a positive direction along the 
b-axis correspond to the interval of 7 semitones, and units in a positive 
direction along the c-axis correspond to the interval of 10 semitones. Any 
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ACE 
c-axis 

b-axis 

a-axD F#is a-axis 

Figure 2. A region within an [0258] Tonnetz 

point in the lattice may be located in reference to any other point in terms 
of units traversed along each of the axes, and consequently, if the pitch 
class of the first point is known, one can determine the pitch class of the 
second. For instance, in Figure 2, a point one positive unit along the b- 
axis from C (=0) is 0+7 = G. A point one positive unit along the a-axis, 
one positive unit along the b-axis, and one negative unit along the c-axis 
from C is (1.4) + (1-7) + (-1.10) = 1 = C#. 

The 60* angle is chosen because it is the angle formed at the edges of 
a regular tetrahedron meeting at a vertex. Just as triangular areas of the 
2-D Tonnetz correspond to triadic elements (or trichordal elements, in the 
case of a generalized 2-D Tonnetz), tetrahedral volumes in our 3-D Ton- 
netz correspond to its tetrachordal elements. In Figure 2, one can observe 
that any point, along with the points lying one positive unit along the a-, 
b-, and c-axes, describe the vertices of an upward-pointing tetrahedron 
and that the pitch classes represented by these points constitute a 'domi- 
nant-seventh' chord. Similarly, any point and the points lying one nega- 
tive unit along a-, b-, and c-axes describe the vertices of a downward 
pointing tetrahedron, and the pitch classes represented by these vertices 
correspond to some Tristan or half-diminished seventh chord. Analogous 
to the inverted triangles/triads of the 2-D Tonnetz, the dual structures of 
Tristan and dominant-seventh chords are visually manifest as oppositely 
oriented tetrahedra in the 3-D Tonnetz (i.e., pyramids with peaks pointed 
upward, versus those with peaks pointed downward). 

Before I discuss relations among tetrachordal elements in our Tonnetz, 
it will be helpful to develop a contextual notation for identifying the pitch 
elements of the tetrachords. For this, we can adapt a contextual notation 
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developed by Moritz Hauptmann to identify the tones of a triad (Haupt- 
mann [1853]1991). 

Figure 3a presents Hauptmann's designation for the tones of a major 
triad, and one of his versions for designating the tones of a minor triad. 
Roman numeral I designates the Einheit of a triad, that chord tone to 
which the others refer by means of 'directly intelligible intervals' (for 
Hauptmann, these are the octave, perfect fifth and major third). Roman 
numeral II refers to the tone in the triad that lies a perfect fifth from the 
Einheit, roman numeral III to the tone that lies a major third from the Ein- 
heit. The difference between major and minor for Hauptmann is that in 
the case of major, the Einheit lies a perfect fifth and a major third below 
the other chord tones (i.e. it has a perfect fifth and major third), whereas 
in minor the Einheit lies a perfect fifth and major third above the other 
chord tones (i.e., it is a perfect fifth and a major third to the tones below). 

One need not accept Hauptmann's acoustical biases nor the dialecti- 
cal connotations inherent in his reference to II and III as Zweiheit and 
Verbindung in order to adopt a similar system of tokens that identifies 
tones based on their intervallic environment within tetrachords of some 
Tn/TnI class. In Figure 3b, I illustrate a neo-Hauptmannian system 
designating two forms of set class [0258]: a 'dominant-seventh' chord 
[C,E,G,Bb], and a 'Tristan' chord [C#,E,G,B]. I designate C and B as 
'Einheiten' of their respective chords-altering Hauptmann's symbol- 
ogy, I label these with a lower case roman numeral i. 'Einheit' here des- 
ignates a chord tone that lies four semitones, seven semitones, and ten 
semitones from the other chord tones. In (C,E,G,Bb), 'Einheit' is the 
familiar root of the chord; in (C#,E,G,B), B is the 'dual root'-the upper 
tone in a traditional third-stacking. Roman numerals ii, iii and iv refer to 
those pcs that lie four, seven and ten semitones respectively from the Ein- 
heit, either above (in the nominally 'major' dominant-seventh) or below 
(in the nominally 'minor' Tristan chord). Our initial choice of 'Einheit' 
was arbitrary-any tone could be the basis to which the others refer. 
What is important is that the system of tokens offers a dual system of 
naming elements of any asymmetrical tetrachord class.8 

Our neo-Hauptmannian labels offer a means of identifying the con- 
textual transforms among tetrachords within our lattice, in particular, 
inversions between tetrachords sharing common tones. Figure 4 illus- 
trates the common-tone mappings about a nexus tetrahedron represent- 
ing the dominant seventh chord [C, E, G, Bb]. Each mapping self-inverts: 
the direction of mapping within the Tonnetz is dependent upon whether 
the operation acts on a 'major' dominant seventh or 'minor' Tristan 
chord. Thus each mapping may be viewed either as a mapping from the 
dominant seventh chord [C, E, G, Bb] to an adjacent Tristan chord, or 
conversely a mapping from some Tristan chord to [C, E, G, Bb]. 
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I IIl II II II I 
C G F ab C 

~ffY P5 tl? ? 
(a) Hauptmann's designation of triadic chord tones 

i ii iii iv iv iii ii i 
C E G Bb C# E G B 

0 10I 
(b) a neo-Hauptmannian system of tokens identifying chord tones in set class [0258] 

i ii iii iv iv iii ii i 
(u,v,w) (u+l,v,w) (u,v+l,w) (u,v,w+l) (u,v,w-1) (u,v-l,w) (u-l,v,w) (u,v,w) 

(c) neo-Hauptmannian tokens applied to generalized tetrachords in the 3-D Tonnetz 

Figure 3 

Figure 4a isolates the six transforms that map or exchange tetrahedra 
sharing a common edge. The exchange is represented spatially as a 'flip' 
of the two tetrahedra about that common edge. For instance, the opera- 
tion Ii exchanges tetrahedra about their common edge bounded by 
chordal elements i and ii. In Figure 4a, the Iii operation flips the central, 
upward-pointing [C, E, G, Bb] tetrachord about the C-E edge, and 
exchanges it with the downward-pointing [E, C, A, F#] tetrachord just 
below and to the front of the illustration. The operation Ii similarly 
'flips' two tetrahedra about their common elements ii and iii. In Figure 4, 
Ilii exchanges the central [C, E, G, Bb] tetrachord (flipping it about the G- 
E edge) with the downward-pointing [B, G, E, C#] tetrachord to the lower 
right in the illustration. Each 'edge-flip' maintains at least the two com- 
mon tones that constitute the common tetrahedral edge. In the case of Iii in this Tonnetz, mapped [0258] tetrachords share three common tones. 

Figure 4b isolates the four transforms that map or exchange tetrahe- 
dra sharing a common vertex. The exchange is represented spatially by a 
'flip' of the two tetrahedra about that common vertex. For example, the 
operation II exchanges two tetrachords that share a common 'Einheit.' In 
Figure 4b, Ii exchanges the central [C, E, G, Bb] tetrachord with the 
downward-pointing [C, Ab, F, D] tetrachord below and to the forward left 
in the illustration. Each 'vertex-flip' maintains at least one common tone 
(the common vertex). However, I"l and I'v map [0258] tetrachords sharing 
two common tones, and 

Iii maps [0258] tetrachords sharing three. 
We can observe the following degeneracy among transforms in this 

equal-tempered Tonnetz: Il = Iv and 
Ii= Iv. The degeneracy arises from 

the symmetries inherent in our chosen set class [0258], and from our 
imposition of equal temperament. Specifically, the equivalence of I" and 
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c-axis c D 

b-axis a-axis 
a-axis AL a-axs -,?< LL al 

Figure 4a. Six 'edge-flips' about a nexus tetrachord, (C,E,G,B?), 
within an [0258] Tonnetz 

iv 

c-axis D 

b-axis 

A a-axis $ 

F E 

A 

E C# 

A# 

Figure 4b. Four 'vertex-flips' about a nexus tetrachord (C,E,G,Bb), 
within an [0258] Tonnetz 
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(u-,v,w+ (uv- (u,v,w+l) 

(u-1,v+1,w ufv+1w 

XiS(u-,v- 1,W)w 

( ,v+l,w) 

c-axis 

(u-1,v,w) 
uv(u+l,v,w) 

u+l,v-l,w) 
b-axis (u,v-l,w) u+,v-,w) 

a-axis 
uw-l +,w- 1 

(u,v,w-1) (u+1,v,w-1) 

Figure 5. A region of generalized Tonnetz about the point (u,v,w) 

iv occurs because the interval from ii to iv (6 semitones) spans half the 
cardinality of our chromatic universe. The equivalence of 

Iii 
and 

Iiv results from the symmetry of the [036] trichord embedded within an 
[0258].9 Moreover, in the modular geometry of the hyper-toroidal space 
in which our equal-tempered Tonnetz resides, lattice points identical in 
pitch are also identical in location. Thus, (X)Ii and (X)I', where X is 
some [0258] tetrachord in this Tonnetz, are the same tetrachord in our 
curved modular space.'0 

A generalized 3-D Tonnetz 

Figure 5 illustrates a region of lattice points in a generalized 3-D Ton- 
netz adjacent to a point (u,v,w). The triple (u,v,w) indicates a point u units 
(in a positive direction) along the a-axis, v units along the b-axis and w 
units along the c-axis from an origin point (0,0,0). An equivalent family 
of points could be constructed around any point in the space. If we select 
coefficients a, 3, and y that correspond to intervals in some universe of 
cardinality N, and posit these as unit lengths along the a-, b-, and c-axes 
respectively, and if we fix the origin point as 0 in an integer notational 
system, then the identity of any point (u,v,w) is given by au + 3v + yw 
(mod N). For instance, fixing (0,0,0) = C = 0, and setting a, 3, and yequal 
to 1, 4 and 8 semitones respectively in a mod 12 pitch-class space, a point 
(2,-3,5) would represent the pitch class (1.2)+(4--3)+(8-5) = 2-12+40 = 
30 mod 12 = 6 = F# in an [0148] Tonnetz. 

Figure 3c illustrates how our neo-Hauptmannian tokens may be af- 
fixed to points in the generalized 3-D Tonnetz. If we let ii refer to a pitch 
class that lies one unit along the a-axis from some Einheit, let iii refer to 
a pitch class one unit along the b-axis, and let iv refer to a pitch class one 
unit along the c-axis (in either a positive or negative direction), then given 
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some point in the lattice (u,v,w) as 'Einheit,' we may define a 'major' 
form of any tetrachord as the tetrahedron comprising the four vertices 
(u,v,w), (u+1,v,w), (u,v+1,w), and (u,v,w+ 1). A tetrahedron representing 
a 'minor' form of a tetrachord class built from the same Einheit would 
consist of the four vertices (u,v,w), (u-1,v,w), (u,v-l,w) and (u,v,w-1). 

Analogously to the [0258] Tonnetz, contextual transformations in 
the generalized 3-D Tonnetz may be represented as edge- or vertex- 
flips among adjacent tetrahedrons. For instance, Iii is an edge-flip that 
inverts a tetrachord about its 'Einheit' and its element ii, mapping 
[(u,v,w),(u+ 1,v,w),(u,v+1,w),(u,v,w+1)] to [(u+ 1,v,w),(u,v,w),(u+1,v-1,w), 
(u+1,v,w-1)] and vice versa. 

I have been cautious to specify the Tonnetz in which a particular tetra- 
hedron-inverting operation occurs, since our neo-Hauptmannian labels 
(and consequently our inversion labels) are tied to the intervallic layout 
of our axes. Were we to explore relations in an [0258] Tonnetz with dif- 
ferently arranged axes (for example positing units along the a-, b-, and c- 
axes of 3, 6 and 8 semitones respectively), the same operations of our 
original [0258] Tonnetz would obtain, but with different 'I' labels. The 
same is not the case if one considers operations within Tonnetze of dif- 
ferent set classes: the family of common-tone preserving, contextual 
inversions of one set class is in general a different family of contextual 
inversions from any other. 

Group Structure of Transforms within the Tonnetz 

If one exhaustively composes the L, P, and R transforms in the triadic 
2-D Tonnetz of Figure 1, the resulting closed group of operations is a 
dihedral group known as the Schritt/Wechsel group (S/W)." The group, 
acting on harmonic triads, consists of 12 mode-preserving operations 
(Schritte) and 12 mode-inverting operations (Wechsel). The symbols So, 
S1, S2, 

.... 
, 
SIl 

will here indicate 12 Schritte that map a triad to the mode- 
identical triad whose root lies 0, 1, 2,..., 11 semitones away in the direc- 
tion of chord 'generation' (up in the case of major triads, down in the case 
of minor).12 For example, (E major)S3= (G major), but (E minor)S3= (C# 
min.). Wo, W1, W2 etc. are Wechsel that map mode-inverted triads whose 
dual roots lie 0, 1, 2, etc., semitones apart in the direction of chord 'gen- 
eration.' Thus in the triadic 2-D Tonnetz, L equals W I1, P equals W7 and 
R equals W4.13 

Analogously, if we exhaustively compose the edge- and vertex-flip- 
ping transforms in our [0258] Tonnetz, the resulting group of operations 
is identical in structure (or isomorphic) to the S/W group acting on har- 
monic triads. The isomorphic S/W group acting on [0258] tetrachords 
maps mode-identical and mode-inverted tetrachords based on the directed 
intervals among their 'Einheiten.' Thus in our [0258] Tonnetz, II is equiv- 
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alent to Wo, Iii is equivalent to W4, etc.14 Note that if we alter our system 
of labels (i.e., select some other tone as 'Einheit') the Wechsel associated 
with each particular contextual inversion are all changed by some con- 
stant. The groups resulting from the relabeling of tetrahedral elements in 
the Tonnetz are therefore automorphic images of one another. 

The exhaustive composition of the contextual inversions of any asym- 
metrical tetrachordal (or trichordal) set class will similarly yield an S/W 
group isomorphic to the S/W groups acting on triads or [0258] tetra- 
chords (or else isomorphic to a dihedral subgroup thereof-contextual 
inversions among members of [0248] for instance yield only the even 
Schritte and Wechsel of the larger group). 

This remarkable result, that the same group of operations underlies 
Tonnetze of such drastically different geometries (and even of different 
dimensions), suggests that the Tonnetz is an entity independent of the 
S/W group. It also suggests an interesting relation between the structure 
of the Tonnetz and the transformations among its members. Elements of 
mathematical groups are largely indifferent to the music-analytical situ- 
ations upon which they are called into service in transformational theo- 
ries. In the context of the S/W group qua group, any Wechsel is basically 
like any other (all of order 2, etc.). Yet one could hardly claim that the 
musical effect of the Relative transform (W4) acting on a triad (e.g., map- 
ping C 

maj.E--A min.) is at all the same as that of the Gegenkleinterz- 
wechsel (W3, e.g. mapping C 

maj.--Ab 
min.). Thus we may view the 

Tonnetz as an independent framework that allows one to make distinc- 
tions among the (otherwise indifferent) transforms that underlie its ele- 
ments. It allows one to posit analytical meaning or value to certain fam- 
ilies of transforms from the larger group based on the distance between 
elements mapped by those transforms within the Tonnetz, whose geome- 
try in turn is determined contextually by the intervallic structure of its 
chordal elements. Distance in the Tonnetz, moreover, is a function of 
common-tone retention. Hence, the function of the Tonnetz in neo-Rie- 
mannian theory is not unlike that of Lewin's INJ function: it provides a 
measure of the progressive versus internal quality of a contextual func- 
tion acting on a 'Klang' of a trichordal or tetrachordal set class.'" 
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NOTES 

1. For a history of the Tonnetz and its evolution from Euler through Riemann, see 
Mooney 1996. A study that discusses the Tonnetz and its relation to Funktionsthe- 
orie in Riemann and his successors is Imig 1970. 

2. The nineteenth-century basis of interval selection was acoustical: the intervals cor- 
responded to what Riemann (along with numerous theorists before him) believed 
to be the only intervals (along with the octave) given by nature. 

3. Richard Cohn (1997) has recently explored the Tonnetz representation of these 
operations, noting their potential for common-tone retention as well as their par- 
simonious voice-leading. The abbreviations derive from Brian Hyer 1989 and 1995 
(101-38). 

4. Cohn 1997 cites Lubin 1974 as the first recognition of the toroidal structure of an 
equally tempered Tonnetz. Hyer's Figure 3 (1995, 119) presents a Klangnetz, the 
geometric dual of a Tonnetz (see Douthett and Steinbach 1998), in pitch-class 
space, which similarly induces a toroidal structure. 

5. Lewin's hexagonal graph of a 3-valued Cohn function (Lewin 1998; 1996, 189), 
is, like Hyer's, a dual of an [013] Tonnetz. 

6. Other writings that extend the Tonnetz into three dimensions include Vogel 1993 
and Lindley and Turner-Smith 1993. 

7. It is so called because the unit cells of the lattice (the smallest units that can fill 
space by translation alone) are face centered cubes (lattice points exist at the six 
vertices and at the center of each cube face). 

8. Henry Klumpenhouwer (1991, chap. 2) explores a similar system of contextual 
labeling. 

9. The embedded [036] is also the reason that IIi! and IiR map tetrachords in our [0258] 
Tonnetz with three common tones. It is interesting to observe that none of the 29 
tetrachord-classes in a chromatic universe of cardinality 12 are without degener- 
ate common-tone-preserving contextual transforms: any tetrachord in c= 12 either 
(a) contains an ic 6 dyad, (b) is symmetrical or embeds a symmetrical trichordal 
subset, or (c) satisfies conditions (a) and (b). 

10. This would not be true in a just-intoned version of our Tonnetz, where 
(C,E,G,B,) Iii = (G#,E,C#,A#) # (C,E,G,Bb) Itv = (Ab,Fb,Db,Bb). Such a Tonnetz would, how- 

ever, occupy an infinite Euclidean space. See Vogel 1993, 123 ff., and Lindley and 
Turner-Smith 1993, 66-68, for discussions of unequally tempered [0258] Ton- 
netze. 

11. Riemann expounds his system of Schritte and Wechsel as directed root-interval 
relations among triads in Skizze einer neuen Methode der Harmonielehre (Rie- 
mann 1880). Klumpenhouwer 1994 reinterprets and extends Riemann's Schritte 
and Wechsel into a group of operations acting on the set of major and minor triads. 

12. This is a vestige of Riemann's belief that major triads were acoustically generated 
from the root up (via overtones), and that minor triads were acoustically generated 
from their upper, dual root down (via undertones). 

13. One can derive the complete S/W group from the L and R transforms alone. Since 
LR = W11W4 = S7 is an element of order 12, it may be combined with L or R or 
any Wechsel (all are of order 2) to generate the complete group. 
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14. Analogously, we can produce generators for our [0258] S/W group. lifi Iii = WIIW4 
= S7 is an element of order 12, which may then be combined with any edge- or ver- 
tex-flip to generate the complete group. 

15. INJ is discussed in Lewin 1987, 123 ff. 
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