12

UNIDADE 16 – Conformação dos Materiais

Esta Unidade não tem propriamente uma "Lista de Exercícios", mas algumas recomendações de como abordar o estudo de seus conteúdos.

Como você certamente deve ter notado depois de ler os *slides* da Unidade, não há, em nenhum momento, nenhuma proposta de realização de cálculos a respeito, por exemplo, de quais seriam as condições de processamento ideais (ou simplesmente adequadas...) para a produção de um determinado produto. Toda a abordagem da Unidade buscou apresentar uma ideia básica, fundamentada em um conceito simples, que é o seguinte: os materiais são conformados em condições: (a) nas quais eles podem ser submetidos a uma deformação plástica sem quebrar, ou (b) nas quais eles se comportam como líquidos e podem solidificar adquirindo a forma de um molde¹.

Partindo dessa ideia básica, foi apresentado um número restrito de operações fundamentais envolvidas nos processos de conformação:

Operações Fundamentais

- Essencialmente, a variedade de operações fundamentais nas quais estão baseados os processos de conformação é relativamente limitada...
 - ➤ Conformação a partir de um líquido / de uma suspensão pouco viscosa de partículas / de um material viscoso
 - Conformação a partir de deformação plástica de um sólido dúctil
 - Conformação a partir da junção de partículas (pós) das matérias-primas
 - Conformação a partir de corte / desgaste de um sólido rígido (ou ao menos rígido o suficiente para poder ser trabalhado...)
 - Conformação a partir de desgaste ou de deposição "camada por camada" (FABRICAÇÃO ADITIVA – "additive fabrication").

Essas operações fundamentais foram agrupadas em sete "conceitos" de processos de conformação, que são reproduzidos a seguir:

_

^{1 ...}uma outra possibilidade seria partir de um bloco de matéria-prima, produzindo a peça desejada por desgaste – mas esse conceito, que é a ideia fundamental dos processos de usinagem, não foi explorada na Unidade...

CONCEITO

Conformar a partir de um LÍQUIDO ou de um FLUIDO VISCOSO, SEM uso de PRESSÃO

- Matéria-prima líquida ou na forma de um fluído viscoso...
 - metal (ou liga metálica) fundido
 - suspensão de matérias-primas cerâmicas; vidro fundido
 - polimero reativo
- …é vertida dentro de um molde (ou sobre uma superfície) e adquire sua forma
 - por um processo físico → solidificação (como gelo dentro de um molde) ou aumento pronunciado da viscosidade
 - por reação química / polimerização
 - por um processo um pouco mais complexo... envolvendo interação entre a suspensão de matérios-primas e o molde (colagem de barbotina)

Conformar PERFIS CONSTANTES de forma CONTÍNUA a partir de um MATERIAL VISCOSO ou de um SÓLIDO DÚCTIL, COM o uso de PRESSÃO

- · Matéria-prima...
 - metal dúctil (por exemplo, alumínio), aquecido (...mas também pode ser a fria...)
 - massa plástica de matérias-primas cerâmicas
 - polimero "fundido" (aquecido acima da T_g → amorfos / T_m → semicristalinos)
- …é forçada contra uma matriz vazada e o material contínuo resultante tem o perfil constante que foi definido pela matriz

CONCEITO

Injetar um LÍQUIDO ou MATERIAL VISCOSO em um MOLDE FECHADO (COM o uso de PRESSÃO)

- Matéria-prima...
 - metal (ou liga metálica) liquido
 - massa plástica de matérias-primas cerâmicas
 - polímero "fundido" (aquecido acima da I_g → amorfos / I_m → semicristalinos), ou polímero líquido, reativo.
- …é forçada dentro um molde fechado e a peça resultante adquire a forma por ele definida

13

CONCEITO

Conformar PEÇAS OCAS a partir de um MATERIAL
VISCOSO, COM o uso de um FLUXO DE GÁS SOB
PRESSÃO

- Matéria-prima...
 - Vidro aquecido a temperaturas dentro da faixa de trabalho
 - polimero "fundido" (aquecido acima da T_s → amorfos / T_m → semicristalinos)
- …é forçada contra um molde pela ação de um fluxo de gás e a peça resultante tem a forma definida pelo molde
- É comum que o processo de conformação ocorra em mais de uma etapa → uso de pré-formas"

CONCEITO

DEFORMAR um material, contra um MOLDE, nas condições em que ele está DÚCTIL ou tem VISCOSIDADE ELEVADA

- Matéria-prima...
 - metal (ou liga metálica) sólido, deformado a quente ou a frio
 - polimero aquecido em uma temperatura (em torno da T_g) na qual ele se comporta como um sólido bastante dúctil
 - vidro (sempre deformado a quente, em temperatura dentro do faixa de trabalha)
 - massa cerămica plástica
- ...é deformada, tomando a forma definida por um molde

CONCEITO

COMPACTAR um PÓ

- Matéria-prima em pó...
 - metal (ou liga metálica)
 - matérias-primas cerâmicas
- …é compactada dentro de um molde, do qual toma a forma.
- Aquecimento posterior a temperaturas elevadas dá a coesão às particulas de matéria-prima → REAÇÃO NO ESTADO SÓLIDO ou SINTERIZAÇÃO

85

Procuramos mencionar as principais características e principais limitações dos processos de conformação que foram apresentados → alguns processos podem ser aplicados, em sua essência, a todas as categorias de materiais (por exemplo, processos baseados em extrusão), enquanto alguns processos não podem ser aplicados a uma categoria (por exemplo, processos baseados em operações de sopro, que não podem ser aplicados a metais) ou então são exclusivos de um tipo de material (por exemplo, colagem de barbonita, específico para materiais cerâmicos).

Também procuramos apresentar alguns critérios que podem ser empregados para a seleção de um processo de conformação, quando eventualmente vários processos sejam possíveis para a produção de uma mesma peça:

Como definir um processo de conformação? (e) A escolha do processo pode depender também de uma série de outras considerações, como por exemplo: Volume de produção Velocidade de produção (produtividade → custo de mão de obra vs. custo de equipamento automatizado) Custo unitário do produto (custo dos materiais + custo do processo + capital investido na produção) Dimensões dos produtos Tipos e complexidade de formas Natureza da superfície / acabamento superficial desejado Tolerâncias nas dimensões

... como a Unidade tem um conteúdo mais conceitual, o que vai ser "cobrado" em prova também será algo conceitual. As questões serão do tipo "leia as afirmações a seguir e indique quais são as verdadeiras e quais são as falsas..."

...quer dizer que eu vou ter que decorar tudo aquilo ???

...não, não vai ter que decorar tudo... As questões procurarão focar as ideias e operações básicas apresentadas na Unidade, que por sua vez estão baseadas nas características dos materiais, que foram apresentadas tanto nessa Unidade, quanto ao longo de todo o curso:

materiais metálicos são:	materiais poliméricos são:	materiais cerâmicos são:
 Relativamente dúcteis → podem ser deformados plasticamente a frio ou a quente Metais / ligas tem temperatura de fusão elevada, mas praticável industrialmente (ou seja, podem ser fundidos de forma economicamente viável em operações industriais) Quando no estado líquido, tem baixa viscosidade → não podem ser soprados, mas podem ser conformados por fundição Pós de metais mais duros ou de ponto de fusão elevado podem ser sinterizados de forma economicamente viável 	 Dúcteis acima da T_g ou da T_m, e essas temperaturas são baixas → podem ser deformados plasticamente em temperaturas baixas Acima da T_g / T_m são líquidos viscosos → podem ser processados como tal: soprados, extrudados, injetados, moldados Polímeros termofixos podem ser conformados como líquidos (reativos) de baixa viscosidade 	 Rígidos: Cerâmicas cristalinas nunca são dúcteis em temperaturas praticáveis industrialmente → mas podem ser produzidas massas plásticas com pós + aditivos Cerâmicas cristalinas tem temperatura de fusão elevada → mas podem ser sinterizados de forma economicamente viável Líquidos viscosos: Vidros acima da T_g (e dentro de uma faixa de temperatura de operação) são líquidos viscosos → podem ser processados como tal

...mas quando dizemos que não precisa decorar tudo, também não quer dizer que não precisa memorizar nada... alguns termos esperamos que você consiga memorizar, porque afinal a memória é um dos grandes atributos do cérebro humano, e você sempre precisa dela em sua vida e precisará certamente em seu exercício profissional...

Nada excessivo, no entanto! Esperamos que você seja capaz de lembrar os nomes (...e, evidentemente, o que eles significam!) de processos de fabricação relacionados a muitos produtos comuns e correntes em nosso dia-a-dia, de expressão em termos de volume de produção e que, além disso, ilustram os "conceitos" que quisemos apresentar na Unidade.

Vai a seguir um exemplo de exercício que exige um pouco de memória, com exemplos de produtos que foram mencionados nos slides da Unidade. Ele é, inclusive, mais exigente do que o que será solicitado para você em avaliação...

Se não conseguir fazê-lo, sem crise, dê uma nova lida nos slides da Unidade, ok?

Se conseguir, está ótimo, parabéns!

Nas colunas à esquerda são listados alguns produtos que estão presentes no nosso cotidiano, e nas colunas à direita estão listados nomes de alguns processos de conformação. Indique nos espaços vazios ao lado dos produtos o número correspondente ao processo de conformação utilizado para a fabricação dos produtos.

Saquinho de supermercado	Conector de torneira, de latão	
Cuba de pia de aço inox	Porta de automóvel	
Tomada elétrica (de material polimérico)	Direção de automóvel em espuma de PU (poliuretano)	
Sino de igreja	Embalagem de shampoo	
Caixa d'água (de material polimérico)	Corpo isolante de vela de ignição (de alumina)	
Bule / xícara de porcelana	Louça sanitária (privada, pia)	
Fio de cobre	Potinho de sorvete (de material polimérico)	
Prato de porcelana	Bloco cerâmico (construção civil)	
Lata de refrigerante	Garrafa de refrigerante (PET)	
Vidro plano de janela	Chapa de aço	
Roda de liga leve	Esquadria de janela de alumínio	
Corpo de caneta esferográfica	Forma de vidro Pyrex (uso em cozinha)	
Cano de PVC	Azulejo cerâmico	
Prato de vidro	Garrafa de cerveja	

1	COLAGEM DE BARBOTINA		
	BARBUTINA		
2	ESTAMPAGEM		
3	3 ESTAMPAGEM		
	PROFUNDA		
4	EXTRUSÃO		
5	"FLOAT GLASS"		
6	FUNDIÇÃO		
7	FUNDIÇÃO SOB		
	PRESSÃO		
8	INJEÇÃO		
9	INJEÇÃO COM REAÇÃO		
10	LAMINAÇÃO		
11	PRENSAGEM		
12	PRENSAGEM		
	ISOSTÁTICA		
13	ROTOMOLDAGEM		
14	SOPRO		
15	TORNEAMENTO		
16	TREFILAÇÃO		

GABARITO UNIDADE 16 – Conformação dos Materiais

Nas colunas à esquerda são listados alguns produtos que estão presentes no nosso cotidiano, e nas colunas à direita estão listados nomes de alguns processos de conformação. Indique nos espaços vazios ao lado dos produtos o número correspondente ao processo de conformação utilizado para a fabricação dos produtos.

			1
Saquinho de supermercado	14	Conector de torneira, de latão	6
Cuba de pia de aço inox	2	Porta de automóvel	2
Tomada elétrica (de material polimérico)	8	Direção de automóvel em espuma de PU (poliuretano)	9
Sino de igreja	6	Embalagem de shampoo	14
Caixa d'água (de material polimérico)	13	Corpo isolante de vela de ignição (de alumina)	12
Bule / xícara de porcelana	1	Louça sanitária (privada, pia)	1
Fio de cobre	16	Soquete de lâmpada (cerâmico)	8
Prato de porcelana	15	Bloco cerâmico (construção civil)	4
Lata de refrigerante	3	Garrafa de refrigerante (PET)	14
Vidro plano de janela	5	Chapa de aço	10
Roda de liga leve	7	Esquadria de janela de alumínio	4
Corpo de caneta esferográfica	8	Forma de vidro Pyrex (uso em cozinha)	11
Cano de PVC	4	Azulejo cerâmico	11
Prato de vidro	11	Garrafa de cerveja	14

1	COLAGEM DE
	BARBOTINA
2	ESTAMPAGEM
3	ESTAMPAGEM
	PROFUNDA
4	EXTRUSÃO
5	"FLOAT GLASS"
6	FUNDIÇÃO
7	FUNDIÇÃO SOB
	PRESSÃO
8	INJEÇÃO
9	INJEÇÃO COM REAÇÃO
10	LAMINAÇÃO
11	PRENSAGEM
12	PRENSAGEM
	ISOSTÁTICA
13	ROTOMOLDAGEM
14	SOPRO
15	TORNEAMENTO
16	TREFILAÇÃO