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ABSTRACT
Understanding the deformation processes of soil material under

raindrop impact is a basic step in studying soil resistance against
particle detachment by raindrop splash. To simulate the deformation
pattern of a solid material under impact, we used the finite difference
technique to solve the dynamic equation of linear elasticity. The
selected material properties resembled soil media of wide ranges of
elasticity. Two types of impact loading were imposed: a steady, uni-
form load and a simulated raindrop impact load. Materials re-
sponded differently under these loading conditions and showed dis-
similar deformation patterns. For a material with low modulus of
elasticity, a uniform depression was found under steady, uniform
load, while a cone-shaped depression was shown under simulated
raindrop impact. The shape of the surface deformation gave us in-
sight into the mechanism of material detachment. The interaction
of the lateral jet stream and the obstacles in its course are believed
to be the major factor in determining the material detachment. The
obstacles can be the sides of the cavity or the irregularities on the
granular material itself.
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UNDERSTANDING THE DEFORMATION PROCESSES
of soil material under raindrop impact is the

basic step in studying the mechanics of soil resistance
against splash detachment. If we examine the pro-
cesses involved in the impact-detachment phenom-
ena, two major modes of action can be identified. They
are the surface compression from the impulsive load
and the lateral jetting streams that carry the eroded
particles. The manner in which the soil surface de-
forms under the raindrop impact determines the angle
of incidence between the jet stream and the soil ma-
terial and, subsequently, the amount of the detach-
ment. Thus, it is imperative to study the transient
deformation of the soil surface in order to better de-
scribe the impact phenomena.

Raindrop impact erosion has been the subject of
broad interest in the fields of material engineering
(Fyall and King, 1970, 1974). Engineers have dealt
with problems of material erosion, for example, the
erosion of airplane wings, windows, and helicopter
blades while flying through rainstorms, and the ero-
sion of steam turbine blades. Although the subject ma-
terials and the impact environment that the engineers
have been confronted with are quite different from the
natural raindrop-soil splash erosion, the basic princi-
ples are readily deductible. Experimental techniques,
such as high-speed photography and transducer mon-
itoring, have provided valuable information in de-
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scribing the flow regime as well as in registering the
impact force. The lack of a microscopic delineation
with these techniques prevents us from compiling a
complete mechanistic model of the impact process.

Geotechnical engineers study the deformation of soil
materials, but most of their works deal with the rigid
loads, either statically or dynamically. The classical
Boussinesq solution represents the stress distribution
in the soil domain at equilibrium (p. 158, Winterkorn
and Fang, 1975). Raindrop impact-soil deformation
has the characteristic of transient, nonrigid loading in
which the soil surface deforms without the confine-
ment of the projectile surfaces. The nonuniform, un-
steady nature of the raindrop impact deviates greatly
from the stress conditions normally analyzed by most
civil engineers.

In this study, we will numerically examine the de-
formation pattern of a soil medium at the initial stage
of raindrop impact. The dynamic equations of linear
elasticity will be solved for materials in which the me-
chanical properties resemble soil media of wide ranges
of elasticity. Numerical results will be used to dem-
onstrate the time history of the deformed surface of
an elastic medium with different compressional prop-
erties.

THE BASIC DYNAMIC EQUATIONS
The equation of motion in a homogeneous isotropic elas-

tic medium is given by
(X + 2G)V(V • D) - C7VXVXZ) - p d2D/dt2 = 0, [1]

where D is the displacement vector, p is the density of the
solid material, / is time, X and G are the Lame's constants,
V is the gradient operator, V • is the divergence operator,
and VX is the curl operator (Richart et al, 1970). Note that
G is also called the shear modulus or the rigidity modulus.
Expressing Eq. [1] in a cylindrical coordinate system, and
assuming axisymmetric conditions, we can rewrite Eq. [1]
as

/ 92A.(\ + 2G) —f
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[2]
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where Dr and Dz are radial (r) and axial (z) components of
the displacement vector D. The assumption of axisymmetry
implies that the circumferential or angular displacement, De,
is zero and Dr and Dz are invariant in 0, this simplifies the
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problem from three dimensional to a two-dimensional one.
The interrelationships among Lame's constants, X and G,
and other solid properties, such as Young's modulus, E, and
the Poisson's ratio, v, are given below:

f~< _

[4]

X = Ev/(l-2v)(l+v),
v = 0.5X/(X+G),
E = G(3X+2G)/(X+G).

The stress wave propagation velocities in an elastic medium
are denned as

Vc = [(X + 2G)/p]1'2, [5]
and

V, = (G/P)1/2, [6]
where Vc in the compressional wave velocity and Vs is the
shear wave velocity (p. 77-78, Richart et al., 1970).

The displacement-strain-stress relationships (or Hooke's
law) for elastic materials are given below:
Strain components:

8z

a/-

€« =

[7]

Stress components:
ar = (\ + 2G) ((r+ez+(e) - 2G (tz+te),
<rz = (X + 2G) (er+(z+te) — 2G (er+ee),
a, = (X + 2G) («r+62+<,) - 2G (er+6z),

r,z = rzr = GTrz [8]
where e,, ez, f, are the normal strains, yrz and -yzr are the shear
strains, an az, a, are the normal stresses, and the rrz and rzr
are the shear stresses. The axisymmetry condition does not
imply that the circumferential (or angular) stress and strain,
a, and e«, vanish.

The elastic half-space is originally at rest. Thus, we have
the following initial conditions:

A<r.z,0) = I>z(r,z,0) = 0 . [9]

The boundary conditions along the axis of symmetry (r =
0)are

A*uo = °. [103
and

SDz(0,z,t)/dr = 0 . [11]
The surface boundary conditions (z = 0) are:

<r#M> - *(r.t), [12]
and

where .F(r,0 is the surface loading function. A center-time-
center-space finite difference scheme is formulated to solve
the basic dynamics equations. The results show the response
of an elastic half space under dynamic loading conditions,
which simulates the soil surface deformation from a rain-
drop impact.

THE NUMERICAL SCHEMES
The domain of calculation is given in Fig. 1 . The

equations of motion (Eq. [2] and Eq. [3]) are written
in finite difference form by replacing the various de-

rivates by their centered difference approximations
(Alterman and Karal, 1968). If we let r = C-Ar and z
= m-Az, where Ar and Az are incremental lengths
along the r and z axes, and let / = n • A;, where A/ is
an increment in time, and use subscripts (C,m) and
superscript n to represent space-time domain (r,z,t),
Eq. [2] becomes

v

_ T\n
1Jz(l-\,m+\

-G 1
4ArAz

Jz(l-\,m-\)\

= P~-2[Dr"^-^r"(l,m) + Dr"(^}. [14]

Rearranging terms, and using the definition of wave
velocities in the elastic medium, Eq. [14] may be writ-
ten
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Fig. 1—The solid calculation domain and its discretization.
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Likewise, Eq. [3] can also be written as
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[15]
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Equations [15] and [16] are suitable for the interior of
the solid domain. Along the axis of symmetry (8 =
0), Eq. [15] and Eq. [16] are undefined because of the
presence of C in the denominator. From the symmetric
boundary conditions that we have imposed, the radial
displacement is zero along the axis of symmetry, hence,

D", = 0. [17]

To evaluate axial displacement along the axis of sym-
metry is more complicated. The undefined terms in
Eq. [3] are dDr/rdz and 8Dz/rdr. By using L'Hospital's
rule, these terms can be approximated as:

[18]r oz oroz r or g
From axisymmetry conditions, we have

and
[19]

Expression [ 19] can be approximated by the following:

3r2

n"Uz(-\,m)

[20]

and

__ r\n i
ur(-\,m-\) '

4ArAz
_ n«ur(\,m-\)

2AMz '
Thus, the finite difference form of Eq. [3] for axial
displacement along the axis of symmetry can be ex-
pressed as

[22]

The finite difference Eq. [15], [16], and [22] cannot be
applied at the free surface (z=0), because these equa-
tions involve undefined quantities, D^-\) and
D%t,-i)- In order to calculate the displacements in this
special case, we need to use the surface boundary con-
ditions. Combining the surface boundary conditions
and the basic stress-strain-displacement relationship,
we have

Z>, Dr 3£

= F(r,t),
and

[23]

[24]

Writing out in finite difference form and rearranging
terms, we have

Vs

and

—>r{l-\,0) ~JIJr(l,0)

[26]

A special situation in the surface boundary is when r
= 0 and z = 0. Symmetry boundary conditions imply
that Dj^o.-i) = 0- Using L'Hospital's rule, Dr/r can be
approximated by 8Dr/dr and Eq. [25] is written as
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The stability constraint of the scheme is
Af ^ 1

[27]

[28]

2.

3.

where Vc and Fs are the compressional and shear ve-
locities, respectively (Alterman and Karal, 1968).

All the finite difference equations are explicit in na-
ture, thus the solution procedure is straight forward.
The steps of the numerical procedures are as follows:

1. Evaluate the displacement at the surface bound-
ary using Eq. [25], [26], and [27].
Use Eq. [22] to calculate the axial displacement
along the axis of symmetry.
Use Eq. [15] and [16] to calculate the axial and
radial displacements within the solid domain.
This step and step 2 are carried out with increas-
ing depth, or index m. The stopping criterion is
when both displacement components (Dz and Dr)
are negligibly small.
The calculation is then carried out for the next
time steps until the final time we desire.

A FORTRAN program is formulated to carry out
the calculation. The storage requirement for this pro-
gram with calculation domain of 60-radial and 60-
axial grid points, complete with graphical output sub-
routine, is 33k words. In the CDC-6500/6600 Dual

SIMULHTED RRINDROP IMPHCT LORDING

4.

NON-DIMENSIONHL TIME
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0 V7V12
. 1 .2 .3 .4 .5 .6 .7 .8

•R-flXIS, R/R0
Fig. 2—The simulated load applied on the solid surface at nondi-

mensional time 0.005, 0.01, 0.02, 0.04, 0.08, and 0.12. The dash-
line shows the steady, uniform load of magnitude 5 P0.

MACE operating system at Purdue University, a typ-
ical run of 240 time steps takes approximately 70 s.
The computer time increases with the rigidity of the
material that we use in the simulation run. This is
simply because the high wave velocities associated with
the high Young's modulus increase the range of the
influence area within the calculation domain.

In this numerical simulation, we ran two types of
loading. They were (i) transient impact loading sim-
ulating raindrop impact and (ii) steady uniform load-
ing. The simulated load function is obtained from our
previous numerical simulation in the hydrodynamics
of the impact (Huang et al., 1982). For the steady uni-
form loading, we choose a magnitude intermediate
among the simulated raindrop impact loading, and set
the size of the this uniform load equivalent to the size
of the final step of the transient impact load.

The mechanical properties of the ideal elastic ma-
terial, the Poisson ratio, v, and the Young's modulus,
E, are chosen to represent a typical soil material (p.
567, Winterkorn and Fang, 1975). We set v equal to
0.35, and use four values of E to represent different
degrees of rigidity; they are 1, 2, 4, and 8 MPa (1 MPa
= 106N/m2).

RESULTS AND DISCUSSION
Results shown in this paper are presented in non-

dimensional form, with the reference dimensional
scales defined as follows: The reference pressure, Pm
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is the steady-state stagnation pressure, 0.5pwV0
2, where

pw is the density of water and V0 is the impact velocity;
the reference length is denned as the radius of the
drop, R0; and the reference time scale, t0, is denned
as RO/VO- Thus, for a 4-mm diameter drop falling at
10 m/s, the reference pressure is 50 kPa, the reference
time is 200 jus, and the reference length scale is 2 mm.

We intend to describe our results in the qualitative
sense, since we are not actually solving a fully coupled
elastic impact problem. The transient impact loading
function, F(r,t\ was taken from our earlier simulation
in rigid impact. Although the actual loading stresses
are believed to be less in magnitude for elastic ma-
terials compared to the rigid case, the spatial and tem-
poral stress distributions will have similar patterns at
the initial stage of the impact (Fyall and King, 1974).
Thus the novelty of this study is to show different
deformation characteristics. Absolute values are not
stressed unless used in the numerical example.

Figure 2 shows the simulated impact loading func-
tion, F(r,i), that we have applied on the surface of the
elastic material at several selected time instances. For
comparison, we also show the uniform load in the
same graph by dashline. There are three important
points about the raindrop impact loading function that
are distinctly different from uniform loading condi-
tions. They are: (i) the magnitudes are very high at
the initial time steps, and the load diminishes very
quickly; (ii) the distribution is not uniform and the

Table 1—The nondimensional axial displacement at the center
of the load under steady, uniform loading condition.

Nondimensional time, t/tn

Young's modulus, MPa 0.04 0.08 0.12

8
4
2
1

0.009
0.012
0.017
0.024

0.018
0.024
0.034
0.047

0.028
0.037
0.050
0.071

Table 2—The nondimensional axial displacement at the center of
the load under simulated raindrop impact loading condition.

Nondimensional time, t/t0

Young's modulus, MPa 0.02 0.04 0.08 0.12

8
4
2
1

0.011
0.019
0.024
0.030

0.012
0.021
0.029
0.044

0.012
0.022
0.035
0.057

0.013
0.023
0.037
0.063

maximum occurs at the edge of the contact boundary;
and (iii) the area of loading increases with time. Fig-
ures 3, 4, 5, and 6 show the time history of the de-
formation pattern for materials with different moduli
of elasticity under different loading conditions. The
axial component of the surface displacement at the
central axis (r = 0) is tabulated in Tables 1 and 2.

From Table 1, we see that the axial displacement
changes linearly with time within each elasticity group.
The axial displacement vs. time linearity relationship
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is true for areas away from the load/no-load boundary,
where uni-axial displacement is dominant. Near the
load/no-load, boundary, both the axial and radial dis-
placements are important; the linearity no longer holds
for the single displacement component. Another point
that needs to be made is that we are dealing with an
assumed perfect elastic medium with infinite width
and depth; however, at time infinity, saying the dis-
placement is infinity is mathematically true, but phys-
ically unrealistic. We only intend to study the initial
stage of the impact without taking into account the
energy dissipation; the time scale is relatively short
when compared to the time needed to reach the equi-
librium state.

From a plot of surface deformation patterns under
uniform load, we see that the boundary effect is more
profound in materials with higher Young's moduli (Fig.
3, 4). By the boundary effect, we mean the extent of
nonuniformity in displacement as measured from the
central axis. In contrast to uniform loading condi-
tions, the displacement patterns under simulated rain-
drop impact have completely different characteristics
(Fig. 5, 6 and Table 2). The more rigid materials ac-
quire most of their surface deformation from the in-
itial high loads; as time progresses and load dimin-
ishes, the deformations are observed mainly near the
load/no-load boundary. The deformed surface shows
a rather uniform depression. For soft materials with
low moduli of elasticity, the displacements near the
central axis increase continuously without a signifi-
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.800-
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.400 .600 .800 1.000 1.200

LORD

1.200-

Fig. 7—The deformation pattern within the solid domain under steady,
uniform load. The Young's modulus is 1 MPa and the nondimen-
sional time is 0.12.

cant 'slow down' compared to the materials with high
rigidity. The cavity not only expands in the radial di-
rection as the loading spreads; it also deepens. The
final displaced surface shows a very strong boundary
effect.

Figures 7 and 8 are used to demonstrate the dis-
placement within the solid domain for the same ma-
terial subjected to different loading conditions. Solid
lines show the deformed grid system and dashlines are
original grids before loading. In both cases, the axial
displacement is dominant near the central axis of the
load. The radial displacement of material under uni-
form loading is observed near the load/no-load
boundary. For the case of simulated raindrop impact
loading (Fig. 8), the lateral displacements show a cone-
shaped distribution inside the solid domain. The lat-
eral zone at which a noticeable lateral displacement is
observed is closer to the central axis as the depth in-
creases. This pattern reflects the characteristics of the
transient, nonuniform load function, F(r,t), that we
have applied on the surface.

Figure 9 shows the displacement distribution for a
material with high rigidity. Although the displacement
is smaller at the surface for the rigid material, it is
carried to a larger depth. This is due to the higher
compressional and shear wave velocities associated
with the higher modulus of elasticity (Eq. [5] and [6]).

So far, we have shown results of the surface defor-
mation patterns under different loading conditions.
Now we want to utilize them to explain the material
detachment phenomena under raindrop impact. From
an energy standpoint, we can assume that a material
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Fig. 8—The deformation pattern within the solid domain under sim-
ulated raindrop impact load. The Young's modulus is 1 MPa and
the nondiniensional time scale is 0.12.
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Fig. 9—The deformation pattern within the solid domain under steady,
uniform load. The Young's modulus is 4 MPa and the nondimen-
sional time scale is 0.12.

is "destabilized" if we stretch it and is "stabilized" if
we compress it. Examining the depression made by
the impact loading, we see that the material at the flat
bottom of the cavity gains stability due to compres-
sion, and material along the rising sides of the cavity
is weakened by tensile stretch. At this point, if we
impose a high velocity lateral jet stream in the cavity,
the sides of the cavity will act as an obstacle in the
flow field. The high stagnation pressure on the sides
of the cavity will easily erode away the already weak-
ened material. For a more rigid material, it is more
likely to have a saucer-shaped depression after impact.
This is mentioned by Mihara (1952) in his observa-
tions on sand surface after waterdrop impact. For ma-
terials with low rigidity, the stabilized area is only con-
fined near the central axis, the inherent low strength
on top of the larger areas subjected to the lateral jetting
will cause the material to erode more from the cavity.
In fact, due to the greater depression and the larger
amount of detachment, we only observe a hemispher-
ical dent after impact on soft soils. The granular na-
ture of the soil material further provides more irreg-
ularities in the jet stream because a microscopically
smooth surface is impossible to obtain.

In conclusion, we have shown the different defor-
mation patterns of materials with different elasticities
under steady uniform and simulated raindrop impact
loadings. Because of the distinct difference between
these two types of loading, the surfaces show different
reactions. Under uniform nonrigid loading condi-
tions, the load/no-load boundary effect is more sig-

nificant for high rigidity materials. Under simulated
raindrop impact loading, the deformation pattern
greatly reflects the nature of the loading; this is espe-
cially significant in materials with low modulus of
elasticity. The shape of the surface deformation leads
us to the conjecture of the mechanism of material de-
tachment. The interaction of the lateral jet stream and
the obstacles on its course is believed to be the major
mechanism in determining the material detachment.
The obstacles can be the sides of the cavity or the
irregularities on the granular material itself.
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