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7.5 Homogeneous Linear Systems with Constant Coefficients

PROBLEMS In each of Problems 1 through 6 find the general solution of the given system of equations
and describe the behavior of the solution as ¢ —» co. Also draw a direction field and plot a few
trajectories of the system.
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In each of Problems 7 and 8 find the general solution of the given system of equations. Also
draw a direction field and a few of the trajectories. In each of these problems the coefficient
matrix has a zero eigenvalue. As a resuit, the pattern of trajectories is different from those in
the examples in the text.
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In each of Problems 9 through 14 find the general solution of the given system of equations.
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In cach of Problems 15 through 18 solve the given initial value problem. Describe the behavior
of the solution as f — oo,
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Section 7.5

2. Setting x = £ ™. and substituting into the ODE. we obtain the algebraic equations

1—r -2 £ _ 0
3 —-4-rJ\&) \O)
For a nonzero solution, we must have det(A —rI) = r>+ 3r + 2 = 0. The roots of the
characteristic equationare r; = — 1 and r, = — 2. For r = — 1, the two equations
reduce to £, = £, . The corresponding eigenvector is £* = (1,1)”. Substitution of

r = — 2 results in the single equation 3£, = 2£,. A corresponding eigenvector 1s
£ = (2.,3)". Since the eigenvalues are distinct. the general solution is

x=c1(i)e"+c2(§)e‘3‘.
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4. Solution of the ODE requires analysis of the algebraic equations

(37 —2-)(2)- (o)

For a nonzero solution, we must have det(A —rI) = r> +r — 6 = 0. The roots of the

characternistic equationare r, = 2 and r, = — 3. For r = 2. the system of equations
reduces to £, = £, . The corresponding eigenvector is £ = (1,1)". Substitution of
r = — 3 results in the single equation 4 £, + £ = 0. A corresponding eigenvector is

£% = (1, —4)". Since the eigenvalues are distinct. the general solution is
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8. Setting x = £ " results in the algebraic equations

3—r 6 AN AL
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For a nonzero solution. we must have det(A —rI) = r> — r = 0. The roots of the
characteristic equation are r, = 1 and r, = 0. With r = 1, the system of equations
reduces to £, + 3£, = 0. The corresponding eigenvector is £¥ = (3, — 1)*. For the

case r = 0. the system 1s equivalent to the equation £, + 2£, = 0. An eigenvector 1s
£ = (2, —1)". Since the eigenvalues are distinct. the general solution is
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The entire line along the eigendirection £? = (2, — 1)” consists of equilibrium points.
All other solutions diverge. The direction field changes across the line z, + 2z, =0.
Eliminating the exponential terms n the solution. the trajectones are given by

Il+312= — e



15. Setting x = £ " results in the algebraic equations
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For a nonzero solution, we must have det(A — rI) = r> — 6r + 8 = 0. The roots of
the charactenistic equation are r; = 4 and r, = 2. With r = 4 the system of equations
reduces to £, — £, = 0. The corresponding eigenvector is £*) = (1,1)”. For the

case r = 2, the system 1s equivalent to the equation 3£, — £ = 0. An eigenvector 1s
£% = (1,3)". Since the eigenvalues are distinct. the general solution is

x= cl(i)e“+c,(;)e2‘.

Invoking the initial conditions, we obtain the system of equations

Gg+te,=2
c,+3c,= —1.

Hence ¢, = 7/2 and ¢, = — 3/2. and the solution of the IVP 1s
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7.6 Complex Eigenvalues

in terms of real-valued functions. In each of Problems 1 through 6 also draw a direction field,
sketch a few of the trajectories, and describe the behavior of the solutions as 1 — oo,
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In each of Problems 9 and 10 find the solution of the given initial value problem. Describe the
behavior of the solution ast — o0,
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In each of Problems 11 and 12

(a) Find the eigenvalues of the given system.

(b) Choose an initial point (other than the origin) and draw the corresponding trajectory in
the x;x;-plane.

(c) For your trajectory in part (b) draw the graphs of x; versus r and of x, versusr.
(d) For your trajectory in part (b) draw the corresponding graph in three-dimensional &xy.x;-
space.
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In each of Problems 13 through 20 the coefficient matrix contains a parameter e. In each of
these problems:

(a) Determine the cigenvalues in terms of a.

(b) Find the critical value or values of « where the gualitative nature of the phase portrait for
the system changes.

(c) Drawa phase portrait for a value of « slightly below, and for another value slightly above,
each critical value.
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Section 7.6

2. Setting x = £ " results in the algebraic equations

—1-r —4 £ _ 0
1 -1-rJ\&/)  \0/)
For a nonzero solution, we require that det(A — rI) = r*> + 2r + 5 = 0. The roots of
the charactenistic equation are r = — 1+ 2:. Substituting r = — 1 — 2:, the two

equations reduce to £ + 2i £, = 0. The two eigenvectors are £ = ( —2i.1)" and
€2 = (21,1)". Hence one of the complex-valued solutions is given by

. -2 .
xm - ( )e-(l-t-‘.h,lt
1

= ( —lzz)e"(coth— 1s51n2t)

=e_t(—23m2t et —2c.os2t)_
cos2t —sin2t
Based on the real and imaginary parts of this solution. the general solution 1s

_ _,(—2sin2t)+ _,(2cos2t)
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3. Solution of the ODEs 1s based on the analysis of the algebraic equations

2—7v -5 &Y _ (0
1 22)(2)-6)
For a nonzero solution. we require that det(A — rI) = > + 1 = 0. The roots of the
characteristic equation are r = 1. Setting r = 1, the equations are equivalent to
£ —(2+1)& = 0. The eigenvectors are £% = (2+1,1)" and €2 = (2 —1,1)".
Hence one of the complex-valued solutions 1s given by

xcjl] —_ (2;-z)ett

(2-1*-1)(cost+isint)

2cost — sint fcost+2sint
— +l . B
cost sint

Therefore the general solution 1s

(2cost-3int> (cost+2sint)
X=0¢ il ,

cost sint

The solution may also be written as
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10. Solution of the system of ODEs requires that
-3-r 2 &) _ (0
-1 -1-rJ\&/) \0)
The characteristic equation is 7> + 47 + 5 = 0, with roots r = — 2+ 1. Substituting

r = — 2+ 1, the equations are equivalent to £; — (1 — 2)&;, = 0. The corresponding
eigenvector is £ = (1 —7.1)". One of the complex-valued solutions is given by

xl‘l,l — ( )e(—.-‘-t)t
1

1_' - = B
( lz)e"t(cost+zsmt)

238 . _ 5
o cost+ sint 4 =2 cos?,L + sint .
cost sint

Hence the general solution 1s

5= c.e-2 cost+ sint 4 oo —cost+ sint
o cost : sint '

Invoking the initial conditions, we obtain the system of equations

cGG— =1
c = -2.

Solving for the coefficients, the solution of the initial value problem i1s
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17. The characteristic equation of the coefficient matrix is ° +2r + 1+ a = 0, with
roots given formally as r;, = — 1%,/ — a . The roots are real provided thata < 0.
First note that the sum of the roots 1s — 2 and the product of the roots1s 1 + a. For
negative values of a . the roots are distinct, with one always negative. Whena < — 1,
the roots have opposite signs. Hence the equilibrium point 1s a saddle. For the case

—1 < a < 0, the roots are both negative, and the equilibrium point 1s a stable node.

= — 1 represents a transition from saddle to node. When a = 0. both roots are

equal. For the case a > 0. the roots are complex conjugates, with negative real part.
Hence the equilibrium point 1s a stable spiral.

a=-15
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20. The characteristic equationis 7> + 27 — (24 + 8a) = 0. with roots

2= —1+1/25+8a.

The roots are complex when a < — 25/8. Since the real part 1s negative, the origin
1s a stable spiral. Otherwise the roots are real. When — 25 < a < — 3, both roots
are negative, and hence the equilibrium point 1s a stable node. Fora > — 3. the roots
are of opposite sign and the origin 1s a saddle.
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28. A mass m on a spring with constant X satisfies the differential equation (see Section 3.8)
mu” 4+ ku=0,

where u(f) is the displacement at time ¢ of the mass from its equilibrium position,
(a) Letxy = u,x; = u', and show that the resulting system is

o 1),
*=lgm o)™

(b) Find the eigenvalues of the matrix for the system in part (a).

(c) Sketch several trajectories of the system. Choose one of your trajectories, and sketch
the corresponding graphs of x; versus f and of x; versus r. Sketch both graphs on one set
of axes.

(d) Whatis the relation between the eigenvalues of the coefficient matrix and the natural
frequency of the spring-mass system?

28(a). Letz, = u and z, = u'. It follows that ] = z, and

= — —u.

m

In terms of the new vanables, we obtain the system of two first order ODEs

(b). The associated eigenvalue problem 1s
— B 61 _ 0
—k/m -—-r)J\&/) \0)
The characteristic equation is 7> + k/m = 0, with roots r,, = £1/k/m .
(c). Since the eigenvalues are purely imaginary. the origin is a center. Hence the phase

curves are ellipses. with a clockwise flow. For computational purposes, let k = 1 and
m=2.

(d). The general solution of the second order equation 1s

. k ) k
u(t) = cycosy/ —t+casiny/ —t.
m m

The general solution of the system of ODEs 1s given by
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It 1s evident that the natural frequency of the system 1s equal to Im(ry,).



7.8 ReEated Eignvalues

PROBLEMS In each of Problems 1 through 6 find the general solution of the given system of equations. In

each of Problems 1 through 4 also draw a direction field, sketch a few trajectories, and describe
how the solutions behave as r — oo.

@ 1x=(1 s 2y o)
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In each of Problems 7 through 10 find the solution of the given initial value problem. Draw
the trajectory of the solution in the x,x;-plane and also draw the graph of x; versus 1.
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In each of Problems 11 and 12 find the solution of the given initial value problem. Draw the
corresponding trajectory in x;x;xy-space and also draw the graph of x; versus 1.

1 0 0 -1
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Section 7.8

2. Setting x = £t results in the algebraic equations

8 —-4-rJ\&) \0)
The characteristic equation 1s 7> = 0, with the single root r = 0. Substituting r = 0

reduces the system of equations to 2£; — £, = 0. Therefore the only eigenvector 1s
£ =(1.2)". One solution is
. 1
(1) p—
: (2)

which 1s a constant vector. In order to generate a second linearly independent solution,
we must search for a generalized eigenvector. This leads to the system of equations

4 = 2 nl - 1

8§ —4/\n/) \2/)
This system also reduces to a single equation. 21, — 5, = 1/2. Setting n, = k. some
arbitrary constant, we obtain 7, = 2k — 1/2 . A second solution 1s

= (e (5 510)
-(3)e+ (2) ()

Note that the /ast term 1s a multiple of x'*' and may be dropped. Hence

o= ()(2)

The general solution 1s

All of the points on the line z, = 2z, are equilibrium points. Solutions starting at all
other points become unbounded.



4. Solution of the ODE requires analysis of the algebraic equations

—3—r &£\ _ (0
=i 2 r g'_v o 0 ‘
For a nonzero solution. we must have det(A —rI) =r*+r + i = 0. The only root
1s r = — 1/2_ which 1s an eigenvalue of multiplicity two. Setting r = — 1/2 1s the

coefficient matrix reduces the system to the single equation — £, + £, = 0. Hence the
corresponding eigenvector is £ = (1.,1)”. One solution is

5 (1){‘/3.
In order to obtain a second linearly independent solution. we find a solution of the system
-13)()-0)
e h —\1/)

There equations reduce to — 51, + 517, = 2. Set 1, = k. some arbitrary constant. Then
n. = k+2/5. A second solution 1s

1 k :
@ _ -t/2 -t/2
. —(l)te +(k+2/5)e
- (i)te‘”: + (235)(‘”3 +k ( i) e,

Dropping the /ast term. the general solution 1s
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8. Solution of the ODEs 1s based on the analysis of the algebraic equations

—%—T % & _ 0
o)le)=lo)

The characteristic equation is r> + 2r + 1 = 0, with a single root r = — 1. Setting
r = — 1. the two equations reduce to — £, + £, = 0. The corresponding eigenvector 1s

€ =(1,1)". One solution is
= (i)e".

A second linearly independent solution 1s obtained by solving the system

(%)-()

T 1)

The equations reduce to the single equation — 3, + 3, = 2. Letn, = k. We obtain
n. = 2/3 + k. and a second linearly independent solution 1s

= (i)te_t’L (2/3k+ k)e_t
= (i)te“+ (233)e"+k(i)e".

Dropping the last term. the general solution 1s

cme()ersel(er+ (8]

Imposing the initial conditions. find that
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so that ¢; = 3 and ¢, = — 6. Therefore the solution of the IVP 1s

(2 ) (0o




10. The eigensystem 1s obtained from analysis of the equation

3—-r o &) _ (0
-1 =-3-r/J\¢&/) \0)
The characteristic equation 1s r° = 0, with a single root r = 0. Setting r = 0. the two "

equations reduce to £, + 3£, = 0. The corresponding eigenvectoris £ = ( —3,1)%.
Hence one solution 1s
‘ -3
(1) o
; ( 1 )

which 1s a constant vector. A second linearly independent solution 1s obtained from the

TG -0

The equations reduce to the single equation 1, + 3. = — 1. Let p, = k. We obtain
n: = — 1 — 3k . and a second linearly independent solution 1s

- (e (7
= k
-3 -1 -3
-(1)+(3)+(3)
Dropping the last term. the general solution 1s
_ -3 2 -3 by -1
x=a| s 1 0 :

Imposing the initial conditions. we require that

-3¢, —c=2
c; =4,
which results in ¢;, = 4 and ¢; = — 14 . Therefore the solution of the IVP 1s

= () -(7)




7.9 Nonhomogeneous Linear Systems

PROBLEMS In each of Problems 1 through 12 find the general solution of the given system of equations,
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Section 7.9

5. As shown in Prob. 2, Section 7.8, the general solution of the homogeneous equation

15
1 t
X = Cy 5 +c 2t—% :

An associated fundamental matrnx 1s

1
W) = (2 2tt—l)'

The mnverse of the fundamental matrix 1s easily determined as

i [(4-3 —2+2
. (t)—(St—S —4t+5)

We can now compute

O (t)g(t) = —i(%‘Ht_l),

B\ —2t—4
and

— 124 4471 - Qnt

-1 . = 2
/\1: (t)g(t) dt = ( g )
Finally.
v(t) = () / O ()g(t) dt.

where

v(t) = —%t""+2t‘1 —2Int—-2
v.(t) =5t —4Int— 4.

Note that the vector (2, 4) is a multiple of one of the fundamental solutions. Hence we
can write the general solution as

cme(2) ot ) -3(2) 1) )



6. The eigenvalues of the coefficient matnix are r, =0 and r, = — 5. It follows that
the solution of the homogeneous equation 1s

— 95t
xc=c1(;)+c2( eﬁ‘ )

The coefficient matnix 1s symmetric. Hence the system is diagonalizable. Using the
normalized eigenvectors as columns, the transformation matrix. and its inverse, are

& 1 —2 g . 0 1 2

-7 7)) Tz D)
Setting x = Ty, and h(t) = T *g(t). the transformed system 1s given. in scalar form.
as

5+ 8t

y,’=\/_—5
t
-

!
Yp = — Yt —=.
V5
The solutions are readily obtained as

* o, 4
y(t) = \/glnt+—t+c1 and y.(t) = e + .

V5 5V5

Transforming back to the onginal variables. we have x = Ty, with

=7 1) (o)
= %(;)yl(t) +%( "12)y2(t).

Hence the general solution 1s,

— k] +k(_2€-5t +(Nine+ 2 1)t+4 2
TR 2) TR e 2)" "5 \2) "B\ 1 )



10. Since the coefficient matrix 1s symmetric, the differential equations can be
decoupled.
The eigenvalues and eigenvectors are given by

Using the normalized eigenvectors as columns, the transformation matnix. and its inverse,

are
r= 1 (v2 1Y) p._1(v2 -1
va\ -1 v2)° Va3l V2)
Setting x = Ty, and h(t) = T*g(¢). the transformed system 1s given. in scalar form,
as

y = — 4y, + %(1 + \/5)6“

1
' — o+ —(1— -t
= Ya \/3 (1 \/5) € .
The solutions are easily obtained as

yi(t) = ke ™ + 31%(1 - \/§)e't

v(t) = k.e™ + L(1 - \/§)te-‘.

73

Transforming back to the onginal vanables. the general solution 1s

x=c1(\_/§1)e—4’+c3(\}§)e e (";_‘/—:;;’_‘/;) .—(i/%{)te".

Note that
(Gral5a03) = 2322,) +3va(Ja)

The second vector 1s an eigenvector, hence the solution may be written as
\-/5 —4t 1 ~t 2+/2 1-v/2),
x—cl(_l)e +c2(\/§)e +§(_\/—_1) +3(\/; Q)te :

11. Based on the solution of Prob. 3 of Section 7.6 . a fundamental matrix 1s given by

\Il(t)=( 5cost. Ssint‘ )

2

(3]

2cost+ sint —cost+ 2sint

The nverse of the fundamental matrix 1s easily determined as



,I,-1(t)=%(cost—2$mt S5sint )

2cost+ sint — 5cost
It follows that
L, costsint
T (H)g(t) = ( , )
— cos“t
and

Lain’t
/\Il'l(t)g(t) = ( — lco:tsimt - lt) '

A particular solution 1s constructed as
V() = B(8) / w1 (t)g(t) dt,
where

v(t) = gcostsint — cos’t + gt +1

v,(t) = costsint — %cos:’t-i-t-i- % .

Hence the general solution 1s

Scost S5sint
X =iy . +C . =
2cost + sint —cost+2zsint

. 5/2 _ 0
—tsmt( 1 ) + (tcost+ Smt)(l/Q)'



