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Abstract

The study of constraints will be of great importance in developing a quantum theory for elec-
trodynamics since the canonical prescription for quantization requires the correct Hamiltonian
formalism of the classical theory. We start by reviewing the Lagrangian formalism and then we
proceed carefully through the Hamiltonian formalism with constraints, as constructed by Dirac.
Finally, we use such formalism to perform the canonical quantization of the electromagnetic free
field on Coulomb’s gauge.
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1
Constrained Hamiltonian systems

1.1 Lagrangian field theory

Let Ψ be a generic field in a D-dimensional space-time parametrized by coordinates
x = {xµ}D−1µ=0 = (t, x1, x2, x3). It can be a scalar field φ(x), a vector field Aµ(x), the
metric tensor field gµν(x) or a fermionic spin-1/2 field ψ(x). The equations of motion for
the field Ψ are determined by a Lagrangian (density) L which is a function of the field itself
and is derivatives ∂µΨ(x), noticing that ∂µ ≡ ∂/∂xµ = (∂0,∇) and is assumed to contain
every relevant information about the physical system. Of course, different space-time
regions may be described by different Lagrangians. Lets denote the space-time region
where the Lagrangian is valid by V . The action is defined as the space-time integral of the
Lagrangian over V , which means

S =

∫
V

dDxL (Ψ, ∂µΨ;x)

Hamilton’s principle states that true field Ψ is the one for which δS (Ψ) = 0, which
implies

δS (Ψ) =

∫
V

dDx

(
∂L
∂Ψ

δΨ +
∂L

∂ (∂µΨ)
δ (∂µΨ)

)

=

∫
V

dDx

(
∂L
∂Ψ
− ∂µ

∂L
∂ (∂µΨ)

)
δΨ +

∫
V

dDx ∂µ

(
∂L

∂ (∂µΨ)
δΨ

)

=

∫
V

dDx

(
∂L
∂Ψ
− ∂µ

∂L
∂ (∂µΨ)

)
δΨ +

(
∂L

∂ (∂µΨ)
δΨ

) ∣∣∣∣
∂V

= 0

(1.1)
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If we now make the further assumption that δΨ = 0 at ∂V , then for (1.1) to be
satisfied for all allowed δΨ it suffices that

∂L
∂Ψ
− ∂µ

(
∂L

∂ (∂µΨ)

)
= 0

which is the so called Euler-Lagrange equation.

1.2 Hamiltonian field theory

Lets define the conjugate momentum of Ψ, denoted as π, as

π =
∂L

∂ (∂0Ψ)

then the Hamiltonian densityH is defined as

H (Ψ,∇Ψ, π,∇π;x) = π · ∂0Ψ− L

and must always be expressed in terms of the field Ψ with its spatial derivatives ∇Ψ, and
its conjugate momentum π with its spatial derivative ∇π. The full Hamiltonian H , defined
as the spatial integral ofH, is then

H =

∫
V

dD−1xH

Lets write the action in terms ofH

S =

∫
V

dDx (π · ∂0Ψ−H)

Its important to notice that now the action is a functional of both Ψ and π, not only of
Ψ as before, so we must vary Ψ and π independently. Treating Ψ and π independently,
the equations of motion are obtained through the following: lets start computing δS by
computing its parts separately:

δ (π · ∂0Ψ) = π · δ (∂0Ψ) + δπ · ∂0Ψ
= π · ∂0 (δΨ) + δπ · ∂0Ψ
= ∂0 (π · δΨ)− ∂0π · δΨ + δπ · ∂0Ψ
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δH =
∂H
∂Ψ

δΨ +
∂H

∂ (∇Ψ)
δ (∇Ψ) +

∂H
∂π

δπ +
∂H

∂ (∇π)
δ (∇π)

=
∂H
∂Ψ

δΨ +
∂H

∂ (∇Ψ)
∇ (δΨ) +

∂H
∂π

δπ +
∂H

∂ (∇π)
∇ (δπ)

∂H
∂ (∇Ψ)

∇ (δΨ) = ∇ ·
(

∂H
∂ (∇Ψ)

δΨ

)
−∇ ·

(
∂H

∂ (∇Ψ)

)
δΨ

∂H
∂ (∇π)

∇ (δπ) = ∇ ·
(

∂H
∂ (∇π)

δπ

)
−∇ ·

(
∂H

∂ (∇π)

)
δπ

Now we can write δS (after collecting the δΨ and δπ terms) as

δS =

∫
V

dDx

{[
−∂0π −

∂H
∂Ψ

+ ∇ ·
(

∂H
∂ (∇Ψ)

)]
δΨ +

[
∂0Ψ−

∂H
∂π

+ ∇ ·
(

∂H
∂ (∇Ψ)

)]
δπ

}
+

−
[

∂H
∂ (∇Ψ)

δΨ

] ∣∣∣∣
∂V
−
[

∂H
∂ (∇π)

δπ

] ∣∣∣∣
∂V

= 0 (1.2)

Assuming that δΨ = 0 and δπ = 0 at ∂V , then for (1.2) to be satisfied for all allowed δΨ
and δπ is sufficies that

∂0Ψ =
∂H
∂π
−∇ ·

(
∂H

∂ (∇π)

)
=
δH

δπ
(1.3)

and

∂0π = −∂H
∂Ψ

+ ∇ ·
(

∂H
∂ (∇Ψ)

)
= −δH

δΨ
(1.4)

which are the so called Hamilton’s equations.

Let F and G be any functionals of Ψ and π. Then the Poisson bracket between F and
G is defined as

{F, G}PB =

∫
d3x

(
δF

δΨ

δG

δπ
− δF

δπ

δG

δΨ

)
and has the following properties:

{F, G}PB = −{G, F}PB antisymmetry

{F1 + F2, G}PB = {F1, G}PB + {F2, G}PB linear
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{F1F2, G}PB = F1 {F2, G}PB + {F1, G}PB F2 product law

and finally the Jacobi Identity

{F, {G, H}PB}PB + {G, {H, F}PB}PB + {H, {F, G}PB}PB = 0

With the above definition we can now take {F, H}PB to find

{F, H}PB =

∫
d3x

(
δF

δΨ

δH

δπ
− δF

δπ

δH

δΨ

)
=

∫
d3x

(
δF

δΨ
∂0Ψ−

δF

δπ
(−∂0π)

)
=

∫
d3x

(
δF

δΨ
∂0Ψ +

δF

δπ
∂0π

)
also, lets determine the variation of a functional F with respect to time, meaning δΨ =

∂0Ψ δt and δπ = ∂0π δt:

δF =
∂F

∂t
δt+

∫
d3x

(
δF

δΨ
∂0Ψ δt+

δF

δπ
∂0π δt

)
and since time is a scalar parameter it follows that variations with respect to it are the same
as derivatives with respect to it, which implies that

δF

δt
≡ dF

dt
= {F, H}PB +

∂F

∂t

and now, noticing that

δfi(x)

δfj(y)
= δijδ(x− y)

it follows that Hamilton’s equations can be stated as

∂0Ψ = {Ψ, H}PB and ∂0π = {π, H}PB

Also, we notice that

{Ψ(t,x), π(t,y)}PB = δ(x− y)

{Ψ(t,x), Ψ(t,y)}PB = {π(t,x), π(t,y)}PB = 0

However, in doing so we imposed the independence between Ψ and π, and such
independence its not original from the Lagrangian, so we don’t want to do that. This
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statement is very important since it shows that, indeed, the Lagrangian must hold every
relevant information about the physical system, including the contraints. There are different
kinds of constraints but all of them are represented as a function φ of the field Ψ and its
conjugate momentum π such that

φ(Ψ, π) = 0

The constraints originated exclusively from the form of the Lagrangian are called
primary constraints, and, of course, they must not vary with time. In the presence of
primary constraints we don’t have a uniquely determined Hamiltonian since we take the
ordinary Hamiltonian H and add to it any combination of the M primary constraints,
which means

H∗ = H + cmφm, m = 1, ...,M

where the coefficients cm can be any functions of Ψ and π.

Its weird to write H∗ = H + cmφm since φm = 0, isn’t this simply H∗ = H ? The
answer is yes and no. A crucial matter in developing this theory is when to impose the
constraints. To make this more clear, lets define the so called weak equality or weak
equation, which will be denoted by a ≈ instead of a =. The use of weak equations is this:
the left hand side of an weak equality will only achieve the right hand side when after you
’massage’ the left hand side and impose the constraint. An example: let the constraint be
φ = y − x = 0 and lets look at the functions f = x and g = y, we can then write f ≈ g

since if we impose the constraint on f , we achieve g. We write the primary constraints
themselves as weak equations:

φm ≈ 0

And of course, we can write

H∗ ≈ H

so this modified Hamiltonian is as good as the ordinary one.

Now, starting from the modified Hamiltonian H∗, lets obtain the equations of mo-
tion. It’s crucial to notice that we can, now, vary the field and its conjugate momentum
independently, since any constraint between them has been taken into account through
the lagrange multipliers cm. The only new thing we must consider is the variation of the
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constraints, which is

δ (cmφm) = δ (cm)φm + cm δ (φm)

=

(
∂cm
∂Ψ

δΨ +
∂cm
∂π

δπ

)
φm + cm

(
∂φm
∂Ψ

δΨ +
∂φm
∂π

δπ

)
=

(
φm

∂cm
∂Ψ

+ cm
∂φm
∂Ψ

)
δΨ +

(
φm

∂cm
∂π

+ cm
∂φm
∂π

)
δπ

Now comes another interesting thing: irrespective of φm being 0, its partial derivative is
not. For instance, if we take the previous example φ = y − x = 0, we find that ∂φ

∂x
= 1. So

we can impose the constraints φm = 0 now, and obtain the weak equality

δ (cmφm) ≈
(
cm
∂φm
∂Ψ

)
δΨ +

(
cm
∂φm
∂π

)
δπ

and such variation results in the following Hamilton’s equations

∂0Ψ =
δH

δπ
+ cm

∂φm
∂π

and

∂0π = −δH
δΨ
− cm

∂φm
∂Ψ

which enable us to write

∂0F (Ψ, π) = {F, H}PB + cm {F, φm}PB (1.5)

Lets compute the following

{F, H∗}PB = {F, H + cmφm}PB = {F, H}PB + {F, cmφm}PB

= {F, H}PB − {cmφm, F}PB

= {F, H}PB − cm {φm, F}PB − {cm, F}PB φm

= {F, H}PB + cm {F, φm}PB + {F, cm}PB φm

≈ {F, H}PB + cm {F, φm}PB

so we can write

∂0F ≈ {F, H∗}PB

and notice that {F, φm}PB didn’t vanish even with the constraints imposed since the
Poisson bracket consists of some partial derivatives (that don’t necessarly vanish, as we
saw on the example).
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We can then write ∂0φn as

∂0φn ≈ {φn, H∗}PB ≈ {φn, H}PB + cm {φn, φm}PB

and since the constraints must not vary with time, we find the following

{φn, H}PB + cm {φn, φm}PB ≈ 0 (1.6)

Several things can now happen, the first being an inconsistency: we could find 1 ≈ 0, and
this will only happen if the Lagrangian itself has inconsistent equations of motion, so lets
assume this is not the case. We could find an identity like 0 ≈ 0, which is fine but doesn’t
add anything new and the modified hamiltonian is enough to account for every possible
constraint. Now, if we notice that {φn, φm}PB can be the components ξnm of a matrix ξ,
the cm the components of a vector c, and {φn, H}PB the components of a vector F , (1.6)
becomes the equation

ξ · c = −F

and if ξ is non-singular (det{ξ} 6= 0), then it has an inverse and the coefficients cm are
univocally determined as

c ≈ −ξ−1F

cm ≈ −ξ−1mn {φn, H}PB

and (1.5) becomes

∂0F (Ψ, π) = {F, H}PB − {F, φm}PB ξ
−1
mn {φn, H}PB

which we can write concisely by defining the Dirac’s bracket

{F, H}D ≡ {F, H}PB − {F, φm}PB ξ
−1
mn {φn, H}PB

or explicitly writing the implicit sum

{F, H}D ≡ {F, H}PB −
M∑

n,m=1

{F, φm}PB ξ
−1
mn {φn, H}PB

However, as we can see this only takes the M primary constraints into account, but
there may be more. The (1.6) may lead to more constraints, which we’ll call secondary
constraints denoted by

χs (Ψ, π) = 0, s = 1, ..., S
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Again, such constraints must not vary with time, so they must satisfy

{χs, H}PB + cm {χs, φm}PB ≈ 0

We can readily notice that we’ll again have analyse the possibilities and may end up with
some more secondary constraints and have to repeat the whole process. This process is
called the Dirac-Bergmann algorithm. What matter is that if we don’t find an inconsistency
or a triviality, then we’ll end up with M primary constraints and K secondary constraints
with the final requirement that the K secondary constraints do not vary with time, and
having ended the Dirac-Bergmann algorithm, we are sure to finally find the cm. Denoting
the secondary constraints as φk with k = M + 1, ...,M +K, and letting M +K = J be
the total number of constraints, then the requirement that they all do not vary with time
is

{φj, H}PB +
M∑
m=1

cm {φj, φm}PB ≈ 0 with j = 1, ..., J

Notice that we have J equations and M ≤ J unknowns, and, of course, this must have
a solution otherwise we have an inconsistency, which means the original Lagrangian is
inconsistent, but since we are not considering inconsistent Lagrangians, we’re fine. The
general solution is

cm = Um +
A∑
a=1

vaV
a
m

where Um is the particular solution and V a
m are the A linearly independet solutions to the

homogenous equation. This means

M∑
m=1

{φj, φm}PB V
a
m ≈ 0

We can now state the total Hamiltonian HT

HT = H +
M∑
m=1

Umφm +
M∑
m=1

A∑
a=1

vaV
a
mφm ≡ H ′ +

A∑
a=1

vaΦa

where

H ′ = H +
M∑
m=1

Umφm
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and

Φa =
M∑
m=1

V a
mφm

and notice that the v’s are completely arbitrary functions of time. The equations of motion
are, for some arbitraty function F of Ψ and π, simply

dF

dt
= {F, HT}PB +

∂F

∂t
= {F, H}D +

∂F

∂t

Procedure-wise, all we have to do is find every constraint, compute the constraint
matrix ξ, find its inverse, then compute the Poisson bracket between every constraint
with the field and its conjugate momenta and we’re done: we have the fundamental Dirac
brackets on which we can build our quantum theory.
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2
Source free electromagnetic fields

Let Aµ be the four-potential defined as

Aµ = (φ,A)

Let

Fµν = ∂µAν − ∂νAµ

be the so called field strength. We’ll be using Minkowski metric with signature (−+ ++),
which means that we can raise and lower latin lettered indices as we wish, but must always
change sign for each zero-th index raised or lowered. Also, of course, we’ll be using natural
units (c = ~ = 1). Then the Lagrangian which gives rise to the source free Maxwell’s
equations is

LEM = −1

4
FµνF

µν

The field E is, then

Ej = −∂0Aj + ∂jA0 or Ej = ∂0Aj − ∂jA0

while the field B is

Bj = −εjk`∂kA`
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Lets find the equations of motion. Lets start by computing

∂LEM

∂ (∂νAµ)
= −1

4

(
∂Fαβ

∂ (∂νAµ)
Fαβ + Fαβ

∂Fαβ

∂ (∂νAµ)

)
= −1

4

(
∂Fαβ

∂ (∂νAµ)
Fαβ + ηaαηbβF

ab ∂Fαβ

∂ (∂νAµ)

)
= −1

4

(
∂Fαβ

∂ (∂νAµ)
Fαβ + F ab∂

(
ηaαηbβF

αβ
)

∂ (∂νAµ)

)

= −1

4

(
∂Fαβ

∂ (∂νAµ)
Fαβ + F ab ∂Fab

∂ (∂νAµ)

)
= −1

2

∂Fαβ
∂ (∂νAµ)

Fαβ

and by the definition of Fµν we find that

∂Fαβ
∂ (∂νAµ)

= δναδ
µ
β − δ

ν
βδ

µ
α

which means that

∂LEM

∂ (∂νAµ)
= −1

2

(
δναδ

µ
β − δ

ν
βδ

µ
α

)
Fαβ = −1

2
(F νµ − F µν)

and since Fµν is antisymmetric

∂LEM

∂ (∂νAµ)
= F µν (2.1)

Now, since ∂LEM/∂Aµ ≡ 0, the equations of motion are simply

∂µ

(
∂LEM

∂ (∂µAν)

)
= −∂µF µν = 0 (2.2)

To obtain the conjugate momenta πµ we simply set ν = 0 on (2.1) and find

πµ =
∂LEM

∂ (∂0Aµ)
= F µ0 = ∂µA0 − ∂0Aµ (2.3)

Now comes the interesting part: since F 00 = 0, it follows that

π0 = 0 := φ1
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which is a primary constrain, since it came directly from the form of the Lagrangian. The
other momenta are

πi = F i0 = ∂iA0 − ∂0Ai = Ei

Now we must impose ∂0φ1 ≈ 0 using (1.6)

∂0φ1 = {φ1, H}PB + c1 {φ1, φ1}PB ≡ {φ1, H}PB = 0

where {φ1, φ1}PB ≡ 0 since the Poisson bracket is antisymmetric. Notice that this fact
allows us to simply use the ordinary equations of motion for the momenta

∂0π
µ = − ∂H

∂Aµ
+ ∂i

(
∂H

∂ (∂iAµ)

)
But to do so we must first find the ordinary Hamiltonian through

H = πµ∂0Aµ − LEM

which using (2.3) we can write as

H = πµπµ + πµ∂µA0 − LEM ≈ πiπi + πi (∂iA0)− LEM (2.4)

for which it follows that ∂H/∂Aµ ≡ 0, meaning that we have to compute only

∂i
(

∂H
∂ (∂iAµ)

)
= δ0µ ∂

iπi − ∂i
(

∂LEM

∂ (∂iAµ)

)
= δ0µ ∂

iπi − ∂ν
(

∂LEM

∂ (∂νAµ)

)
+ ∂0

(
∂LEM

∂ (∂0Aµ)

)
and since the second term of the right hand side is proportional to equation of motion (2.2)
we find

∂0π
µ = δ0µ ∂

iπi + ∂0
(

∂LEM

∂ (∂0Aµ)

)
= 0

which for µ = 0 reads

∂0π
0 = ∂iπi + ∂0

(
∂LEM

∂ (∂0A0)

)
= ∂iπi − ∂0

(
∂LEM

∂ (∂0A0)

)
≡ ∂iπi − ∂0π0 = 0

meaning

2∂0π
0 = ∂iπ

i ≈ 0 = ∇ · E
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which in terms of the four-potential is

∇ · E ≡ ∂iE
i = ∂i

(
∂0Ai − ∂iA0

)
= ∂0

(
∂iA

i
)
− ∂i∂i

(
A0
)

= 0 := φ2

where φ2 is a secondary constraint! Thus we must now impose ∂0φ2 ≈ 0 as

∂0φ2 = {φ2, H}PB + c1 {φ2, φ1}PB ≈ 0

Using {
∂iπ

i, F
}

PB = ∂i
{
πi, F

}
PB

we find that {
∂iπ

i, H
}

PB = ∂i
{
πi, H

}
PB ≡ 0

due to (2.4), and also {
∂iπ

i, π0
}

PB = ∂i
{
πi, π0

}
PB ≡ 0

Allowing us to conclude that there are no more constraints and thus c1 is arbitrary.

However, we can do something interesting: we can use the primary constraint to
impose a gauge, we just have to change the Lagrangian:

−1

4
FµνF

µν −→ −1

4
FµνF

µν − ∂0A0 (G)

where G is some function of Aµ such that G ≈ 0. It’s easy to see that now we find

π0 = −G ≈ 0

so we retained our previous primary constraint, but now we can express it simply as G ≈ 0.
Recall that the secondary constraint that arises from π0 ≈ 0 is ∇ · E ≈ 0, which we can
write in terms of Aµ as

∇ · E = ∂0 (∇ ·A)−∇2A0 = 0

and solve it for A0 as

A0 =

∫
d3x′

∂0 (∇ ·A(x′))

4π|x− x′|

which means that instead of 4 degrees of freedom we have only 3.
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The thing now is that if we say that G = ∇ · A ≈ 0, which is Coulomb’s gauge,
then A0 ≈ 0, and although π0 is equivalent to ∇ · A (φ1 = π0 = ∇ · A), the poisson
bracket

{φ1, φ2}PB

is different, lets compute it

{φ1, φ2}PB =
{
∂iA

i, ∂iπ
i
}

PB = ∂i∂i
{
Ai, πi

}
PB = ∇2δ(x− y)

lets also compute {φ1, H}PB{
∂iA

i, H
}

PB = ∂i
{
Ai, H

}
PB

which using (1.3) is

∂i

[
∂H
∂πi
− ∂i

(
∂H

∂ (∂iπi)

)]
= ∂i

(
πi + ∂iA0

)
= ∂iπ

i + ∂i∂
iA0 ≈ 0

So lets find everything about the constraints, recalling that they are

φ1 = ∂iAi and φ2 = ∂iπi

and the canonical fundamental Poisson bracket

{Ai(x), πj(y)}PB = δijδ(x− y)

We already have the following

{φ1, φ1}PB = {φ2, φ2}PB = 0

{φ1, φ2}PB = ∇2δ(x− y)

thus we still have to find the Poisson brackets of the constraints with Ai and πi:

{φ1, Ai}PB = ∂i {Ai, Ai}PB = 0

{φ2, Ai}PB = ∂i {πi, Ai}PB = −∂iδ(x− y)

{φ1, πi}PB = ∂i {Ai, πi}PB = ∂iδ(x− y)

{φ2, πi}PB = ∂i {πi, πi}PB = 0
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This means that the Dirac bracket between Ai and πj is, finally

{Ai, πj}D = {Ai, πj}PB − {Ai, φ2}PB {φ1, πj}PB ξ
−1
21

= δijδ(x− y)− (∂iδ(x− y)) (∂jδ(x− z)) ξ−112

= δ(x− y)
(
δij − ∂i∂j ξ−112

)
and it’s common to write

ξ−112 =
1

∇2

as the Laplacian green’s function, so that the final Dirac bracket is

{Ai, πj}D =

(
δij −

∂i∂j
∇2

)
δ(x− y)

or in momentum space

{Ai, πj}D =

∫
d3p

(2π)3

(
δij −

pipj

|p|2

)
eip·(x−y)

and now we can turn to quantization by imposing

{·,·}D −→ −i[·, ·]

which means that the true commutator between Ai and πj is

[Ai, πj] = i

(
δij −

∂i∂j
∇2

)
δ(x− y)

while the others remain 0.

Yet in the classical realm, lets see the final equation of motion (using the Lagrangian,
but then apllying the constraints we found or imposed):

∂µF
µν = ∂µ (∂µAν − ∂νAµ) = ∂µ∂

µAν − ∂µ∂νAµ = 0

imposing the constraints A0 ≈ 0 and ∂iAi ≈ 0

∂µ∂
µAi − ∂ν

(
∂iA

i
)
≈ ∂µ∂

µAi = 0

thus in Coulomb gauge the equation of motion for A is

∂µ∂
µA = 0
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which is just the wave equation for A, meaning that A is a linear combination of the well
known plane waves of the form

A(x) = Aeip
µxµ = Aei(p

0x0+p·x)

Notice that the constraint ∇ ·A(x) = 0 implies

A · p = 0

which means that given some p, our field has only 2 degrees of freedom εr(p), r = 1, 2,
such that

εr(p) · p = 0 and εr(p) · εs(p) = δrs

this are known as the polarization vectors. As we now, the general solution to the wave
equation can be writen as a linear combination of plane waves, and in our case, we have 2
plane waves for each polarization vector, and this is true for every p, which means we can
write A as

A(x) =

∫
d3p

(2π)3
F (p)

2∑
r=1

εr(p)
[
arpe

ip·x + ar†p e
−ip·x]

where the coefficients arp and ar†p are the amplitudes of each plane wave and are constrained
since, in the end, A has to be real. The function F (p) is there for future normalization
purposes.

This was all classic, but what about quantum? Well, if we consider Heisenberg’s
picture, everything holds equally, the field and its momenta are promoted to operators,
and so are the coefficients a for which we can still show the following commutation
relations [

arp, a
s
q

]
=
[
ar†p , a

w†
q

]
= 0[

arp, a
w†
q

]
= (2π)3 δrsδ(p− q)

which shows that these coefficients are the creation and annihilation operators.
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