Torção

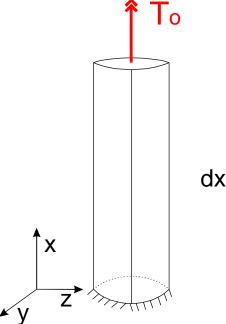
Prof. Alfredo Gay Neto Prof. Miguel Bucalem

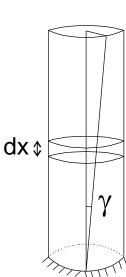
Torção de barras com seção circular/tubular (🕲 PEF<mark>USP</mark>

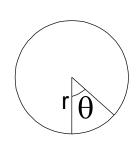
- Trata-se de um problema clássico da resistência dos materiais
 - Pequenos ângulos de torção
 - Seção transversal permanece plana
 - Material elástico linear

$$G = \frac{E}{2(1+\nu)}$$

$$\tau = G\gamma$$







Relação geométrica:

$$rd\theta = \gamma dx$$

$$\frac{d\theta}{dx} = \frac{1}{r}\gamma = \frac{\tau}{Gr}$$

$$\tau = Gr \frac{d\theta}{dx}$$

Integrando na seção transversal

Torque (T)

$$T = \int_{A} r\tau dA = \int_{A} r\left(Gr\frac{d\theta}{dx}\right) dA = G\frac{d\theta}{dx} \int_{A} r^{2} dA = GJ\frac{d\theta}{dx}$$

Tensões de cisalhamento

$$\tau = Gr \frac{T}{GJ} = \frac{Tr}{J}$$

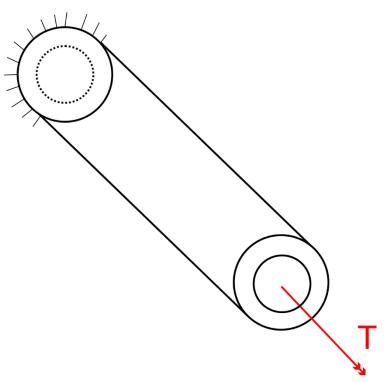
- Variação linear da tensão cisalhante ao longo do raio
- Reciprocidade da tensão de cisalhamento
 - Distorção no plano da seção transversal implica em distorção no plano ortogonal à seção transversal

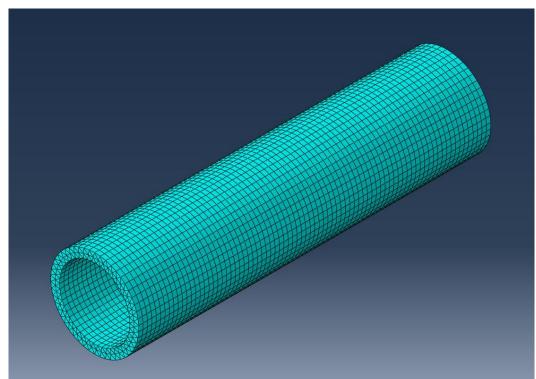
$$\frac{d\theta}{dx} = \theta'$$

Simulação usando Elementos Finitos

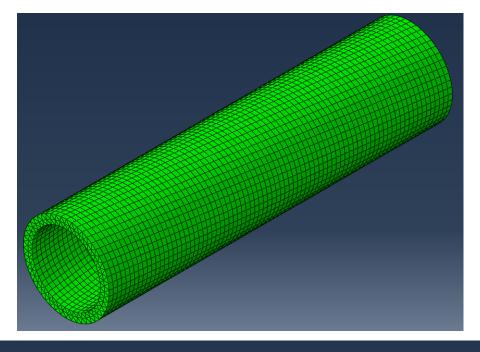
 Torção de um tubo circular

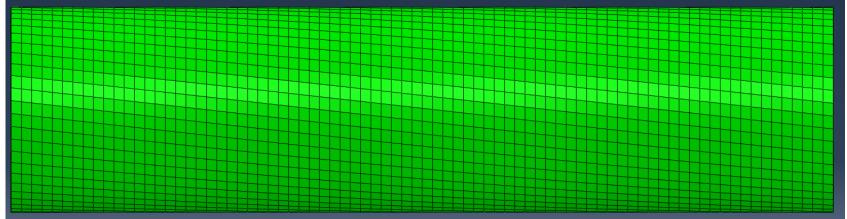
Malha do Método dos Elementos Finitos (MEF)





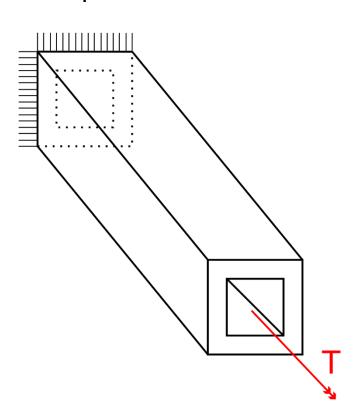
Configuração deformada



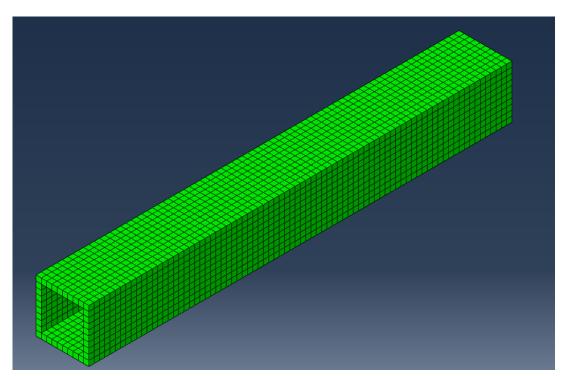


Simulação usando Elementos Finitos

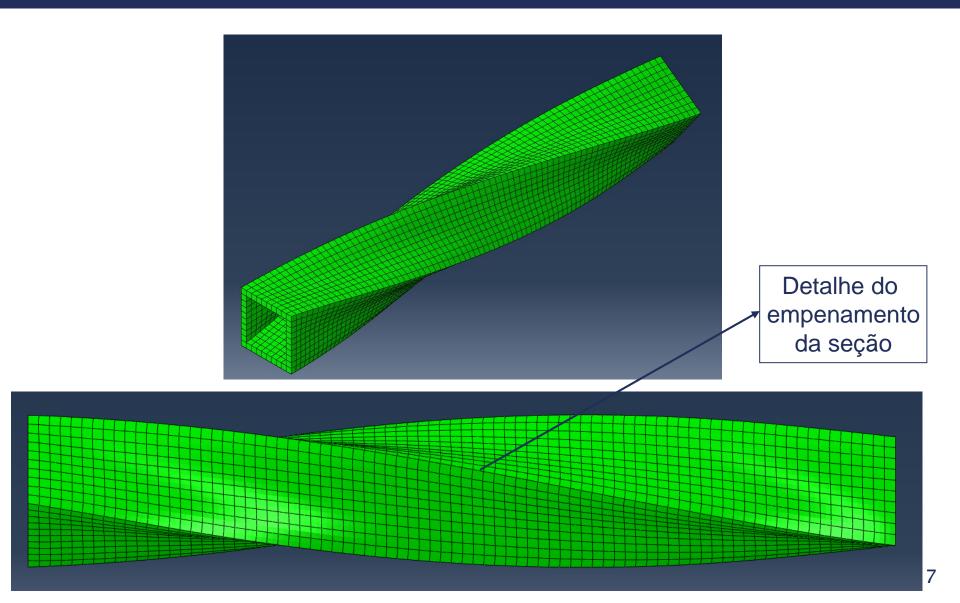
Torção de um tubo quadrado



Malha do Método dos Elementos Finitos (MEF)

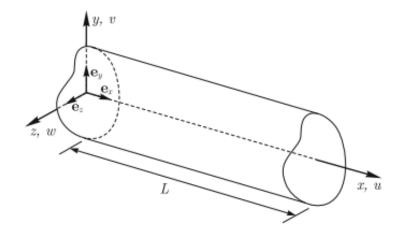


Configuração deformada



Torção de Saint-Venant

- A seção transversal circular não empena
- A seção transversal retangular apresenta empenamento
- É necessário desenvolver uma teoria de torção mais ampla para prever o empenamento da seção transversal
 - Torção uniforme de Saint-Venant
- Método semi-inverso
 - Proposição de um campo cinemático com base em intuição para posterior verificação de sua validade



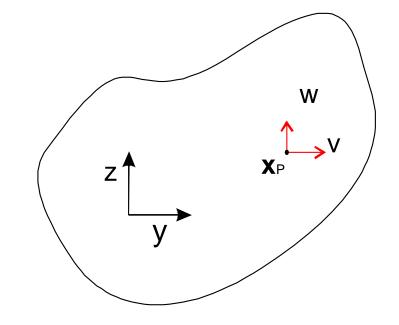
Barra submetida a momentos de torção auto equilibrados nas seções de extremidade:

$$M_t = M_t e_x \text{ em } x = L$$

$$M_t = -M_t e_x \text{ em } x = 0$$

Hipótese cinemática

- O movimento de cada seção transversal é decomposto em duas partes:
 - Rotação da seção (como no caso da seção circular)
 - Empenamento da seção (movimento ortogonal ao plano da seção)
 - Assumem-se pequenas rotações



$$u = \psi(y, z)\theta'$$
$$v = -\theta'xz$$
$$w = +\theta'xy$$

 $\theta'x$ é a magnitude da rotação de uma seção transversal

$$\theta' = \frac{d\theta}{dx} = constante$$
 $\theta(x) = \theta' x$
 $assumindo \theta(0) = 0$
 θ' - taxa de rotação
 $\psi(y,z)$ - função de empenamento

Campo de deformações (infinitesimais)

$$\varepsilon_{\chi\chi}=rac{\partial u}{\partial x}=0$$
 , $\varepsilon_{yy}=rac{\partial v}{\partial y}=0$, $\varepsilon_{\chi\chi}=rac{\partial w}{\partial z}=0$

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \theta' \frac{\partial \psi}{\partial y} - \theta' z = \theta' \left(\frac{\partial \psi}{\partial y} - z \right)$$

$$\gamma_{xz} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = \theta' \frac{\partial \psi}{\partial z} + \theta' y = \theta' \left(\frac{\partial \psi}{\partial z} + y \right)$$

$$\gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} = -\theta' x + \theta' x = 0$$

Campo de tensões

Considerando o material homogêneo e isotrópico:

$$\tau_{xx} = \frac{E(1-v)}{(1+v)(1-2v)} \left[\varepsilon_{xx} + \frac{v}{1-v} \left(\varepsilon_{yy} + \varepsilon_{zz} \right) \right]$$

$$\tau_{yy} = \frac{E(1-v)}{(1+v)(1-2v)} \left[\varepsilon_{yy} + \frac{v}{1-v} \left(\varepsilon_{xx} + \varepsilon_{zz} \right) \right]$$

$$\tau_{zz} = \frac{E(1-v)}{(1+v)(1-2v)} \left[\varepsilon_{zz} + \frac{v}{1-v} \left(\varepsilon_{xx} + \varepsilon_{yy} \right) \right]$$

Que leva a:

$$\tau_{xx} = \tau_{yy} = \tau_{zz} = 0$$

Campo de tensões

Para as tensões de cisalhamento:

$$\tau_{xy} = G\gamma_{xy} = G\theta' \left(\frac{\partial \psi}{\partial y} - z\right)$$

$$\tau_{xz} = G\gamma_{xz} = G\theta' \left(\frac{\partial \psi}{\partial z} + y \right)$$

$$\tau_{yz} = G\gamma_{yz} = 0$$

Equações de equilíbrio

$$\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} = 0$$

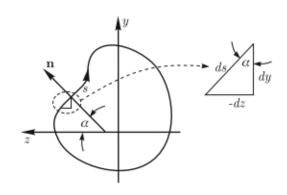
$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} = 0$$

Que leva à equação de Laplace em ψ :

$$\frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} = 0$$

Condições de contorno

- Superfícies laterais se encontram descarregadas (tensão nula)
- A tensão de cisalhamento no plano da seção transversal, ao longo de uma curva perimetral, deve ser tangente à curva



$$n_y = sen(\alpha)$$

 $n_z = cos(\alpha)$
 $ds cos(\alpha) = dy$
 $ds sen(\alpha) = -dz$

Figura 2. Seção transversal genérica.

$$\mathbf{Tn} = \begin{bmatrix} 0 & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & 0 & 0 \\ \tau_{xz} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ n_y \\ n_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{ou} \quad \tau_{xy} n_y + \tau_{xz} n_z = 0$$

Condições de contorno

Substituindo n_v e n_z na equação anterior:

$$\tau_{xy}\frac{dz}{ds} - \tau_{xz}\frac{dy}{ds} = 0$$

Substituindo τ_{xy} e τ_{xz} :

$$G\theta'\left(\frac{\partial\psi}{\partial z}+y\right)\frac{dy}{ds} - G\theta'\left(\frac{\partial\psi}{\partial y}-z\right)\frac{dz}{ds} = 0$$

$$\left(\frac{\partial \psi}{\partial z} + y\right) \frac{dy}{ds} - \left(\frac{\partial \psi}{\partial y} - z\right) \frac{dz}{ds} = 0$$

Problema de Valor de Contorno

Determinar $\psi(y, z)$ tal que:

$$\begin{cases} \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} = 0 \text{ no domínio da seção} \\ \left(\frac{\partial \psi}{\partial z} + y\right) \frac{dy}{ds} - \left(\frac{\partial \psi}{\partial y} - z\right) \frac{dz}{ds} = 0 \text{ no contorno} \end{cases}$$

Note que a solução $\psi(y,z)$ depende somente da forma da seção transversal

Função de Prandtl

A primeira equação de equilíbrio implica em:

$$\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} = 0$$
$$\frac{\partial \tau_{xy}}{\partial y} = -\frac{\partial \tau_{xz}}{\partial z}$$

 Observando esse resultado, podemos propor uma função φ tal que:

$$\frac{\partial \varphi}{\partial z} = \tau_{xy} e \frac{\partial \varphi}{\partial y} = -\tau_{xz}$$

- Essa função é denominada Função de Prandtl
- Satisfaz naturalmente o equilíbrio
 - Se φ apresenta suas derivadas cruzadas de ordem 2 contínuas em todo o domínio, então vale (Teorema se Schwarz):

$$\frac{\partial^2 \varphi}{\partial z \partial y} = \frac{\partial^2 \varphi}{\partial y \partial z}$$

Relacionando com a função empenamento...

Pode-se escrever:

$$\tau_{xy} = \frac{\partial \varphi}{\partial z} = G\theta' \left(\frac{\partial \psi}{\partial y} - z \right) \Longrightarrow \frac{\partial^2 \varphi}{\partial z^2} = G\theta' \left(\frac{\partial^2 \psi}{\partial y \partial z} - 1 \right)$$

$$\tau_{xz} = -\frac{\partial \varphi}{\partial y} = G\theta' \left(\frac{\partial \psi}{\partial z} + y \right) \Longrightarrow \frac{\partial^2 \varphi}{\partial y^2} = -G\theta' \left(\frac{\partial^2 \psi}{\partial y \partial z} + 1 \right)$$

E obter-se:

$$\frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = -2G\theta'$$

(assumindo-se que a função empenamento também obedece as condições do Teorema de Schwarz)

Condição de Contorno

Temos a condição já definida para o contorno da seção transversal:

$$\tau_{xy}\frac{dz}{ds} - \tau_{xz}\frac{dy}{ds} = 0$$

Substituindo as expressões das tensões, escritas com a função de Prandtl:

$$\frac{\partial \varphi}{\partial z} \frac{dz}{ds} + \frac{\partial \varphi}{\partial y} \frac{dy}{ds} = 0$$

Essa expressão pode ser interpretada como sendo a derivada total (substantiva) de ϕ em relação a s:

$$\frac{d\varphi}{ds} = \frac{\partial\varphi}{\partial z}\frac{\partial z}{\partial s} + \frac{\partial\varphi}{\partial y}\frac{\partial y}{\partial s} = 0$$

 Conclusão: a função de Prandtl deve ser constante no contorno. Em particular, podemos adotar o valor nulo.

Problema de Valor de Contorno

Determinar $\varphi(y, z)$ tal que:

$$\begin{cases} \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = -2G\theta' \text{no domínio da seção} \\ \varphi = 0 \text{ no contorno} \end{cases}$$

Tendo-se determinado φ : obtem-se ψ :

$$\frac{\partial \varphi}{\partial z} = G\theta' \left(\frac{\partial \psi}{\partial y} - z \right)$$

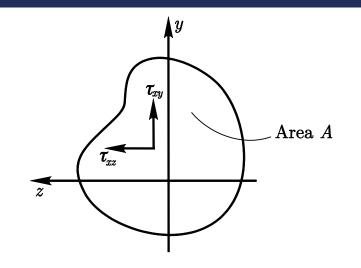
$$\frac{\partial \varphi}{\partial y} = -G\theta' \left(\frac{\partial \psi}{\partial z} + y \right)$$

Integrando as tensões: obtenção dos esforços solicitantes

Considere:

$$f^S = Te_x \text{ em } X = L$$

$$\begin{bmatrix} f_x^S \\ f_y^S \\ f_z^S \end{bmatrix} = \begin{bmatrix} 0 & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & 0 & 0 \\ \tau_{xz} & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ \tau_{xy} \\ \tau_{xz} \end{bmatrix}$$



$$N = \int_A \tau_{xx} dA = 0$$
, $M_y = \int_A \tau_{xx} z dA = 0$, $M_z = \int_A -\tau_{xx} y dA = 0$

Por integração de τ_{xy} e τ_{xz} escritas em termos de φ , mostra-se que:

$$V_y = \int_A \tau_{xy} dA = 0$$
, $V_z = \int_A \tau_{xz} dA = 0$

Momento de torção

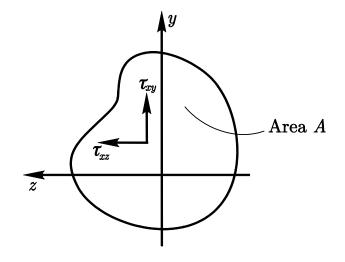
O único esforço solicitante não nulo é o momento de torção:

$$M_t = \int_A (\tau_{xz} y - \tau_{xy} z) dA$$

Que resulta em (Teorema do Divergente):

$$M_t = 2 \int_A \varphi \, dA$$

$$M_t = G\theta' \int_A \left[\left(\frac{\partial \psi}{\partial z} + y \right) y - \left(\frac{\partial \psi}{\partial y} - z \right) z \right] dA = G\theta' \int_A \left[\left(\frac{\partial \psi}{\partial z} y - \frac{\partial \psi}{\partial y} z \right) + (y^2 + z^2) \right] dA$$



Momento de torção

O que permite definir:

$$I_t = \int_A \left[\left(\frac{\partial \psi}{\partial z} y - \frac{\partial \psi}{\partial y} z \right) + (y^2 + z^2) \right] dA$$

Onde:

 I_t - Momento de inércia à torção.

E portanto:

$$\frac{M_t}{GI_t} = \theta'$$

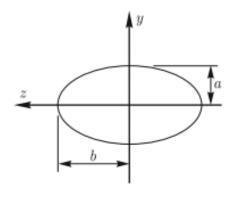
Deduções análogas podem ser feitas para x = 0.

Exemplo - Seção transversal elíptica

Barra de seção elíptica submetida a momentos auto equilibrados

$$M_t = M_t e_x \text{ em } x = L \text{ e}$$

 $-M_t \text{ para } x = 0$



Considere a função:

$$\varphi = C \left(\frac{y^2}{a^2} + \frac{z^2}{b^2} - 1 \right)$$

com C sendo uma constante real.

Satisfaz $\varphi=0$ no contorno e $\frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = -2G\theta'$ no domínio da seção quando:

$$C = -\frac{a^2b^2G\theta'}{a^2 + b^2}$$

Portanto:

$$\varphi = -\frac{a^2b^2G\theta'}{a^2 + b^2} \left(\frac{y^2}{a^2} + \frac{z^2}{b^2} - 1 \right)$$

E resulta em:

$$\left(\frac{\partial \psi}{\partial y} - z\right) = -\frac{2a^2}{a^2 + b^2}z, \left(\frac{\partial \psi}{\partial z} + y\right) = \frac{2b^2}{a^2 + b^2}y$$

E por integração de ψ :

$$\psi = yz - \frac{2a^2}{a^2 + b^2}zy + f(z)$$

$$\psi = -yz + \frac{2b^2}{a^2 + b^2}zy + f(y)$$

Resultando:

$$\psi = \frac{b^2 - a^2}{a^2 + b^2} zy + K$$

onde K é uma constante real.

Admitindo-se u = 0 para y = z = 0, tem-se:

$$\psi(y,z) = \frac{b^2 - a^2}{a^2 + b^2} zy$$

Usando:

$$I_{t} = \int_{A} \left[\left(\frac{\partial \psi}{\partial z} y - \frac{\partial \psi}{\partial y} z \right) + (y^{2} + z^{2}) \right] dA$$

Chega-se a:

$$I_t = \frac{\pi a^3 b^3}{a^2 + b^2}$$

E pode-se calcular:

$$\theta' = \frac{M_t}{GI_t} = \frac{M_t}{G} \frac{a^2 + b^2}{\pi a^3 b^3}$$

Exemplo - Seção transversal elíptica

Os deslocamentos são dados por:

$$u = \theta' \psi(y, z) = \frac{M_t}{G} \frac{b^2 - a^2}{\pi a^3 b^3} yz$$

$$v = -\theta' x z = -\frac{M_t}{G} \frac{b^2 + a^2}{\pi a^3 b^3} x z$$

$$w = \theta' x y = \frac{M_t}{G} \frac{b^2 + a^2}{\pi a^3 b^3} x y$$

E as tensões:

$$\tau_{xy} = \frac{-2M_t a^2}{\pi a^3 b^3} z$$

$$\tau_{xz} = \frac{2M_t b^2}{\pi a^3 b^3} y$$

Graficamente:

