
Market Failure and Cost-Benefit Analysis

Danilo Igliori

Michaelmas 2010

Perfect Competition Assumptions

- Large number of small producers
- Large number of small consumers
- Complete information
- Homogenous good
- No externalities
- No barriers to entry or exit
- Other assumptions regarding functional forms of objective functions and preferences (convexity, returns to scale)

Perfect Competition Assumptions

- Large number of small producers
- Large number of small consumers
- Complete information
- Homogenous good
- No externalities
- No barriers to entry or exit
- Other assumptions regarding functional forms of objective functions and preferences (convexity, returns to scale)

price takers

Conditions for Pareto Efficiency

- Exchange efficiency: MRS between any two goods must be the same for all individuals
- Production efficiency: MRTS between any two inputs must be the same for all firms
- Perfect competitive economies in equilibrium satisfy the 2 conditions

Is the perfect competition model relevant?

- Theoretically
- Empirically?
- Why bother?
- So what?

Property Rights

- Market functioning depends on property rights definition an contract enforcement
- Lack of well defined property rights can lead to over consumption or under investment
- Lack of contract enforcement increase risks in economic transactions

Imperfect Competition

- In many cases the number of agents in a market are much smaller than what is assumed in the perfect competition model.
- 3 standard imperfect market structures:

Monopoly

Oligopoly

Monopolistic Competition

Imperfect Competition

- A crucial common feature of imperfect market structures is that individual agents can affect prices to a certain degree.
- As a result firms face a downward sloping demand curve (in perfect competition firm's demand is flat)

Marginal Revenue

$$MR = MC$$

$$R = p(Q).Q$$

$$MR = \frac{dp}{dq}Q + p\frac{dQ}{dQ}$$

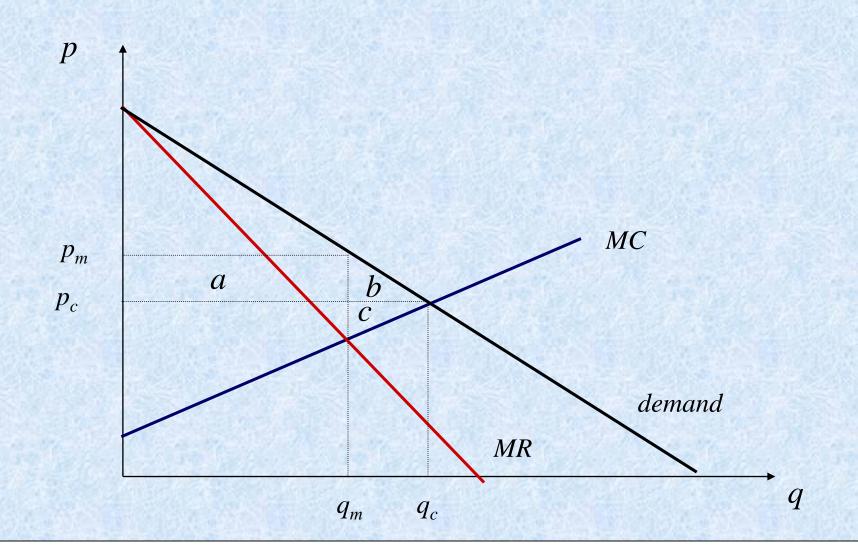
$$MR = p + \frac{dp}{dQ}Q \qquad \qquad \frac{dp}{dQ} < 0$$

Sources of Imperfect Competition

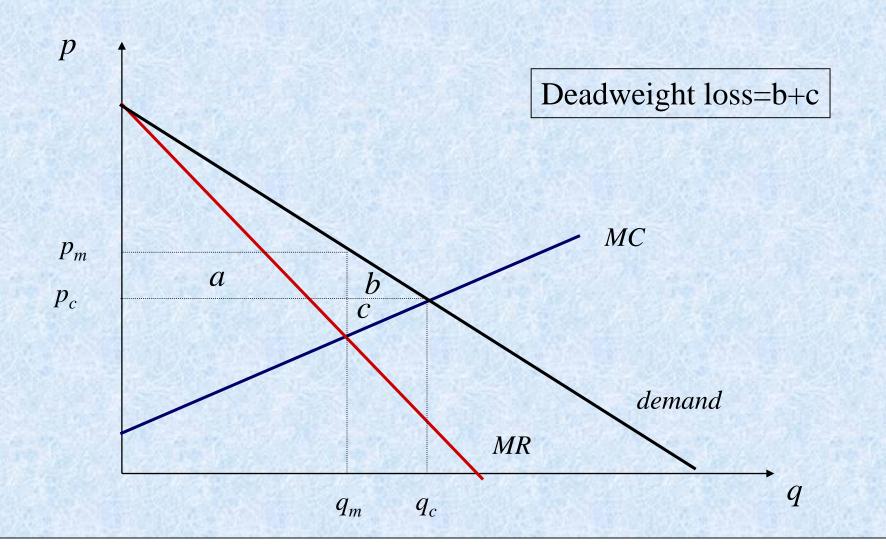
- Increasing returns to scale
- Transport costs
- Imperfect information
- Strategic behaviour and collusion
- Government intervention

Linear Demand

$$p = a - bq$$


Linear demand (inverse)

$$R = pq = (a - bq)q = aq - bq^2$$


$$MR = \frac{dR}{dq} = a - 2bq$$

Monopoly x Perfect Competition

Monopoly x Perfect Competition

More on Competition

- What is the meaning of competition?
- (i) greater freedom of rivals
- (ii) an increase in the number of rivals
- (iii) a move away from collusion towards independent behaviour between rivals
- Causal relation: (i) causes (ii) that causes (iii)
- (iv) higher rewards for wining, higher penalties for loosing

Competition and Incentives

- Competitive pressure makes organisations more efficient internally (process efficiency)
- Competition leads to the selection of the efficient firms in the market (Darwinian/Evolutionary approach)
- Competition to innovate is the major source of gains in productive efficiency over time

Competition, Discovery and Selection

- Hayek: 'the economic problem is a problem of the utilization of knowledge which is not given to anyone in its totality'
- 'It is only through the process of competition that the facts will be discovered'
- Market prices communicate information that has been discovered and influence entrepreneurial efforts
- Competition is vital for discovery

Innovation and Competitive Dynamics

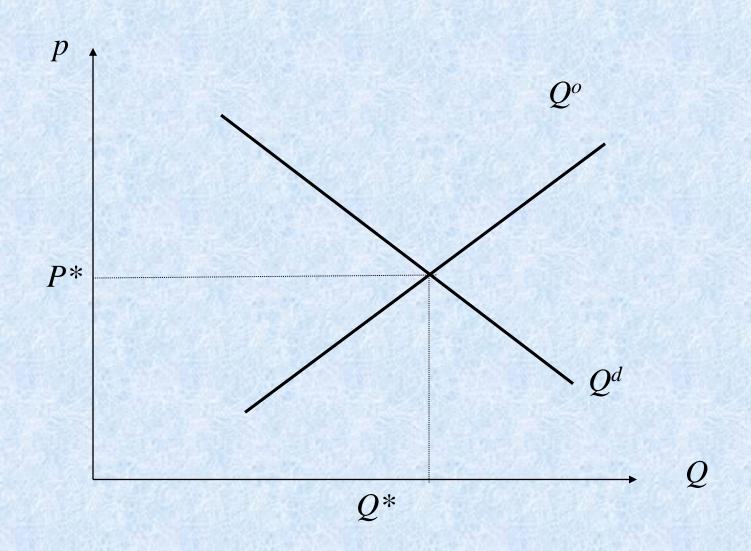
- Schumpeter: 'Capitalism is essentially a dynamic process of creative destruction'
- Focus: non-price competition through innovation
- Technological competition is a dynamic process of rivalry
- Recent work: Endogenous Growth Theory

Competition Policy Analysis

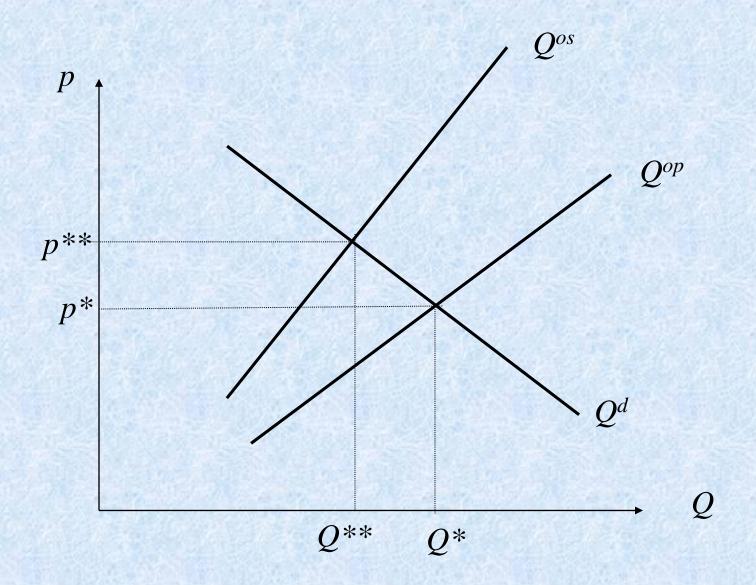
- Competition policies have been growing in interest recently
- Monopoly regulation
- Privatisation
- New market economies in the East
- Anti trust policies

Externalities

- There are many cases where the action of an agent affects other agents. These are called externalities.
- If one individual's actions impose a cost on others we have a negative externality.
- If one individual's actions promote a benefit on others we have a positive externality.


Externalities

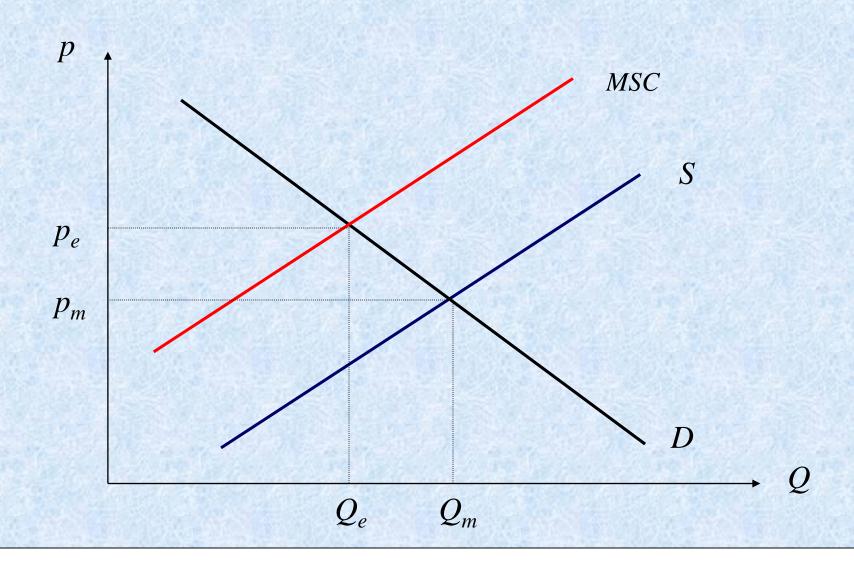
- Examples:
- Firm upstream, fishery downstream
- Bee keeper and flower plantation
- Urban noise
- Pollution
- Knowledge spillovers


Private Costs x Social Costs

- In case of externalities the resource allocation provided by the market will not be efficient
- Since individuals do not bear the full cost of the negative externalities they generate, they will engage in excessive amounts of such activities
- Since individuals do not rip the full benefits of the positive externalities they generate, they will engage in too little amounts of such activities

Equilibrium and Private Cost

Equilibrium and Social Cost


Private Solutions

- In some cases private markets can deal with externalities without government intervention
- Expanding economic units and 'internalising externalities'
- Assigning property rights

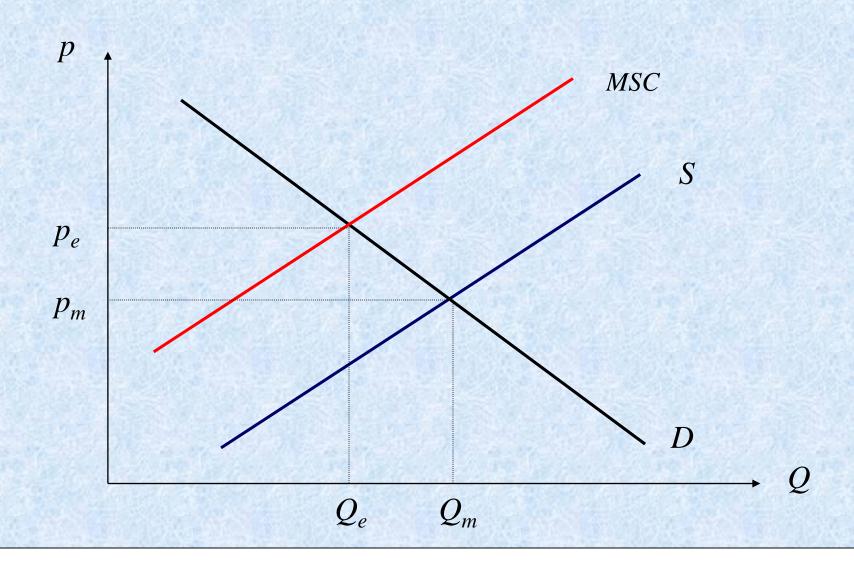
The Coase Theorem

- 'In the presence of externalities, the parties involved can get together and make arrangements by which the externality is internalised and efficiency is ensured'
- Assigning property rights to one group implies compensation from other groups in order to internalise externalities
- Example: factory pays fishermen to compensate for pollution (or fishermen pay factory not to pollute)
- Assignment of property rights impacts distribution

Private Costs x Social Costs

Failure of Private Solutions

- Free rider problem
- Imperfect information
- Incentives not to reveal the truth
- Transaction costs (multiple agents)
- Uncertainty about outcomes and problems with litigation


Public Solutions

- Market-based solutions (prices, permits)
- Direct regulation (standards, limits)

Fines and Taxes

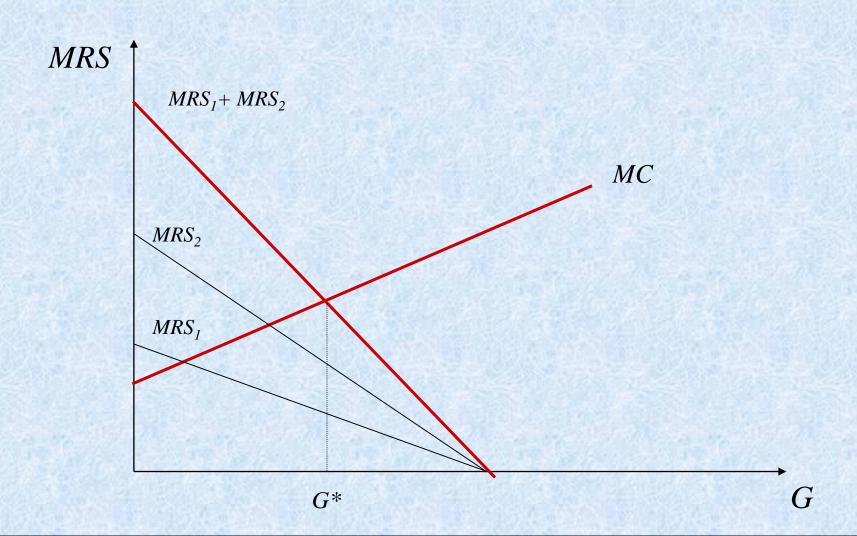
- A typical market-based solution involves levying fees or taxes in proportion to the amount of the externality generated
- A properly calculated fine or tax presents the individual or firm with the true social costs and benefits of its actions
- These are often called Pigouvian taxes

Private Costs x Social Costs

Public Goods

- Two properties:
- Non rival
- Non exclusive

• Examples: national defense, monuments, street lighting, lighthouses, parks


Public Goods

- The market will not supply, or will not supply enough of a public good.
- This provides the rationale for government intervention
- The free-rider problem

Public Goods and Efficiency

- Efficiency conditions
- For a private good, each individual' MRS must be equal marginal cost (price ratio)
- For a public good, the sum of of MRS must be equal marginal cost
- In the case of a private good each person can consume a different amount, but they all must value it the same at the margin-otherwise there is room to trade
- In the case of public good each person must consume the same amount, but they can value it differently at the margin

Public Goods and Efficiency

Public Goods as Extreme Externalities

- When one individual 'purchases' more of a public good, all individuals consumption of that good increase by the same amount.
- When one individual 'purchases' more of a private good other individuals consumption of that good remain unaffected.

Incomplete Markets

- Whenever private markets fail to provide a good or service even though the cost of providing it is less than what consumers are willing to pay, there is a market failure called incomplete market.
- Examples: Insurance, capital markets

Incomplete Information

- There is a general belief that markets supply too little information
- Examples: labelling, financial costs
- Information can be regarded as a public good in many respects
- Much economic activity is directed at obtaining information (job market, loans, investment, insurance)
- Knowledge production (R&D)

Equity and Distribution

- Even if the economy is Pareto efficient it might be desirable to have some government intervention
- Market allocation of income might leave some individuals with insufficient resources
- Unequal income distribution may be seen by the society as a bad thing
- More: coming lecture on Social Choice

Merit Goods

- Assumption: Individuals may not act in their own best interests
- Fully informed individuals may make 'bad' decisions (smoking, drinking, seat belts, education)
- Goods that the government compels individuals to consume are called merit goods
- Problem: Bad individual decisions impose costs to the society
- Paternalism x libertarianism

Introduction to Cost-Benefit Analysis and Policy Evaluation

Analysis of Public Policy

- Rationale for a program (groups of interest, sources of market failure, efficiency issues, equity issues)
- Alternative forms of government intervention:
- 1. Public Production (free, below cost, at cost)
- 2. Private Production (taxes, subsidies, direct production, regulation)
- Program Design (targeting, cost effectiveness, additionality, establishing counterfactuals, costbenefit analysis, implementation)

CB Analysis - Introduction

- In many cases governments want more than a qualitative analysis of a potential program in order to make decisions (rationale for action)
- They need to know whether its benefits exceed its costs
- Cost-Benefit analysis aims to provide the means and a general framework for quantifying inputs and outputs of public programs

Private Cost-Benefit Analysis

- CB analysis is a standard tool for investment decision making
- Steps:
- Identify the set of alternative projects
- Identify inputs and outputs
- Assign values for inputs and outputs
- Add up costs and benefits
- Selecting the best project

Present Discounted Value

$$NPV = R_0 + \frac{R_1}{1+r} + \frac{R_2}{(1+r)^2} + \dots + \frac{R_N}{(1+r)^N}$$

 R_i Results of period i

r Discount rate (interest)

N Number of relevant periods

Alternative methods

- *IRR* Internal rate of return: r* that makes NPV=0
- Pay Back period of time that returns initial investment
- Other financial methods

Internal Rate of Return

$$0 = R_0 + \frac{R_1}{1+r^*} + \frac{R_2}{(1+r^*)^2} + \dots + \frac{R^N}{(1+r^*)^N}$$

 r^* is the rate the makes NPV=0

Pay Back

$$0 = R_0 + \frac{R_1}{1+r} + \frac{R_2}{(1+r)^2} + \dots + \frac{R^{N^*}}{(1+r)^{N^*}}$$

 N^* is the number of periods that returns the initial Investment R_0

Risks and Scenarios

- Amount and cost of inputs
- Market price
- Demand
- Political Scenarios
- Business environment
- Mapping risks, risk premium
- Scenarios and sensitivity analysis

Social CB Analysis

- The government goes through basically the same procedures in evaluating a project
- 2 main differences:
- 1. Concern with a broad range of outcomes (not only profitability)
- 2. Availability of market prices (existence, social costs/benefits)

Measuring Non-Monetised C/B

- For many of the costs and benefits associated with government projects and regulations there are no market prices (lifes saved, time saved, environmental amenities)
- Economists have developed systematic procedures for estimating non-market values
- However, most of these techniques remain controversial

Valuing Time

- Economic models: Assuming that labour markets are in equilibrium, wages represent the value of time (trade-off between labour and leisure)
- Transportation improvements can be evaluated by multiplying the time saved by user's wages
- Problem: wages might overestimate (or underestimate) the value of time due to imperfections in the job market or due to non-monetary benefits (or costs) of different jobs.

Valuing Natural Resources

- Environmental values (use values, existence values)
- Different techniques have been proposed
- Problems: incomplete information, uncertainty, aggregating individual preferences

Valuing Natural Resources II

Contingent Valuation Methods (CVM)

- CVM works by directly soliciting by a sample of consumers of a particular natural resource of environmental amenity they *willingness to pay* and/or *willingness to accept* for a change in the level of environmental flows, in a carefully structured hypothetical market
- Example: the value of a beautiful landscape in the country side.

Valuing Natural Resources III

The Hedonic Pricing Method (HP)

- HP identifies environmental service flows as elements of a vector of characteristics describing a marketed good, typically housing. The method seeks to find a relationship between the levels of environmental services and the price of marketed goods
- Example: noise levels around airports, urban air quality

Valuing Natural Resources IV

Travel Cost Methods (TCM)

- The TCM seeks to place value on non-market environmental goods by using consumption behaviour in related markets
- The costs of consuming the services of the environmental asset are used as a proxy for price. These consumption costs will include travel costs, entry fees, on-site expenditures and outlay on capital equipment necessary for consumption
- Example: the value of a national park

Valuing Life

- Economists' attempts to place monetary value on life have generated much emotional discussion
- However, in many times governments must choose how much to spend in different life preserving policies (transport safety, health systems, pollution control, security)
- Decision rule: when the probability of saving another life due to extra spending becomes sufficiently small

Shadow Prices

- Whenever there is a market failure, markets may not reflect true marginal costs or benefits (sometimes the market failure is simply characterised by the absence of market)
- Economists have attempted to calculate these 'true' prices by revealing marginal social costs and benefits. They are called shadow prices.
- In the absence of market failure the price of a particular good equals it opportunity cost (what is forgone in alternative uses) and also its shadow price

Shadow Prices II

• Labour	Shadow wages is less than mkt wage when there is significant U	No loss in output elsewhere when someone is hired
• Capital	Shadow interest rate exceeds mkt rate when there is rationing in the K mkt	• Expected returns exceed interest rate because firms would like to borrow more at given rate
• Steel	Shadow price exceeds mkt price	Marginal cost of pollution in increased production is not included

Discounting

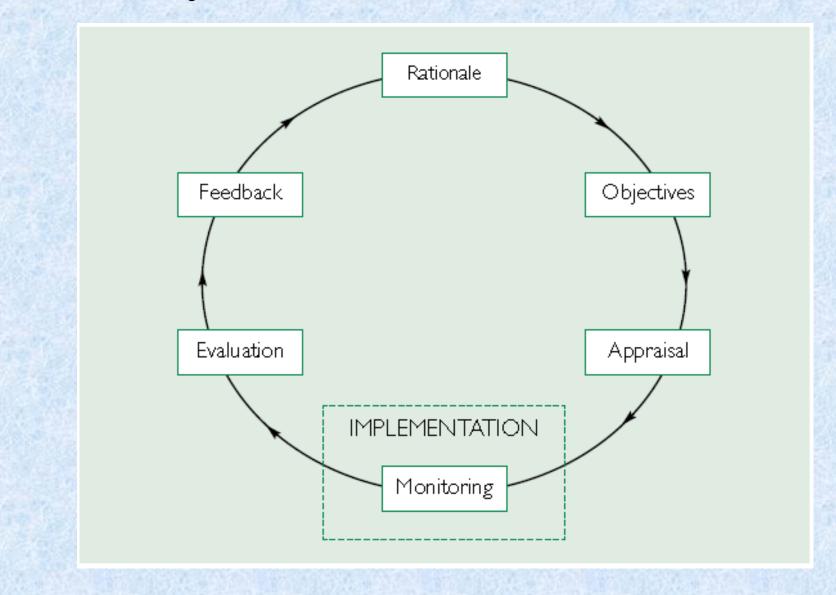
- We've seen that in deciding whether to undertake a project we look at its present discounted values
- The discount rate of private firms is normally the interest rate the firm has to pay
- What discount rate should governments use?
- The central question regards the relationship between the interest rate faced by producers and the interest rate faced by consumers

Discounting II

- If there are no market failures consumers' marginal rate of substitution equals producer's return to capital. Then using the market interest rate is appropriate.
- However, when market failures are pervasive (especially in capital markets) matters are more complicated.
- Also, projects might impact different agents in different ways. So, which rate should be used?
- This is a matter of high controversy. Many economists argue that the appropriate rate for government discounting may be none of the observed market rates, especially when projects impact future generations

Discounting III

- Some economists believe that welfare of future generations at the same level of income should be weighted less than welfare of present generations.
- The rate at which future generation's welfare should be discounted is referred as the pure discount rate.
- Other economists however argue that that all generations should be given equal weight.
- Further reference: 1. Diamond, P. and Mirlees, J. (1971) 'Optimal Taxation and Public Production', *AER* 61: 261-78;
- 2. Stiglitz, J. E. and Dasgupta, P. (1971) 'Differential Taxation, Public Goods and Economic Efficiency', *Review of Economic Studies* 39:151-74


Cost Effectiveness

- As we've seen, in some cases there are difficulties in comparing costs (\$) and benefits (lives, health, time, environment)
- Cost effectiveness analysis provides a way of doing this by looking at programmes with the same benefits at the least cost
- However, there might be problems in measuring costs as well. Shadow prices for inputs might differ from market prices, a social rate might be used to discount costs incurred in different dates, or there are uncertainty regarding costs.

In Summary

- Cost-benefit analysis and cost effectiveness analysis are important tools used by policy makers throughout the world
- They provide technical tools to the decision making process
- While there never will be complete precision, especially in hard-to-quantify areas (or areas where uncertainty is significant), judgments will be made weighting various considerations and therefore quantification can be helpful in resolving trade-offs.

Policy Evaluation: Introduction

Types of Evaluation

- Process evaluation: how the program operates; problems in service delivery.
- Cost-benefit evaluation: assessment of costs & benefits once project implemented; uses actual as opposed to projected data.
- Impact evaluation: whether project has desired effects on target population; focus on attribution & causality; most sophisticated form of evaluation.

Impact Evaluation

• **Definition:** a study which aims to assess changes in "well-being" of individuals, households, communities or firms which can be attributed to a particular project, program or policy.

Counterfactuals

 Key question: What would have happened had project/program/policy not been implemented?

Need to establish counterfactual scenario

• Interested in comparing 2 states of the world, one of which we can't observe!

How to evaluate?

- Given impossibility of observing alternative state of world studies compare: "beneficiaries" (treatment) with "non-beneficiaries" (control).
- Non-beneficiaries provide counterfactual: outcomes proxy those for beneficiaries in alternative state.
- **Either:** Non-beneficiaries must have similar characteristics to beneficiaries
- **Or:** Must be able to control for any systematic differences in characteristics which affect outcome and program participation.

References

• Stiglitz (2000)

• HM Treasury, The Green Book: Appraisal & Evaluation in Central Government