Operações Unitárias II – 2ª Lista de exercícios

Profa Milena Martelli Tosi

Ex. 1: Qual o valor de D_0 para uma cepa de *C. botulinum*, se o tempo de 1,2 min é requerido para uma redução de 99,999% na temperatura de 121,1°C. Calcule o tempo necessário para reduzir o número de esporos por um mínimo de 12 ciclos logarítmicos, na mesma temperatura.

RESP: $D_{121,1oC} = 0.24 \text{ min}$; $F_{121,1oC} = 2.88 \text{ min}$.

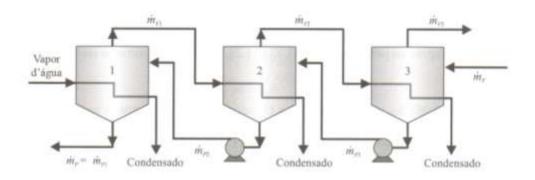
Ex. 2: Um processo térmico é fundamentado no valor de F_0 de 3,9 min. Cada lata contém inicialmente 10 esporos de um microrganismo com o valor de D_0 igual a 1,5 min e com valor de z de 11°C. Calcule a propabilidade de deterioração. Se a temperatura do processo fosse elevada de 5°C, mantendo o tempo de processamento de 3,9 min, qual seria a nova propabilidade de deterioração?

RESP: 1 lata em 40. 1 lata em 2.511.886.

- **Ex. 3:** A partir dos dados de sobreviventes de suspensões de esporos de *Bacillus stearothermophius* na tabela a seguir, determinar:
 - (i) estime o tempo de redução decimal (D) para cada temperatura;
 - (ii) o parâmetro z;
 - (iii) o valor de F₀ necessário para alcançar uma probabilidade de deterioração no produto final de uma lata em 100.000, partindo de uma concentração inicial de esporos viáveis de 100 esporos/lata;
 - (iv) mostre que o tempo de processo F_0 recomendado também providencia um processo seguro contra botulismo (D_0 = 0,20 min; valor de esterilização SV = 12), bem como um processo adequado de branqueamento sob as seguintes condições: D_0 para a enzima igual a 0,5 min, com um mínimo de 99% de redução da atividade enzimática.

T = 105°C		T = 115°C		T = 121°C	
t (min)	Sobreviventes (UFC.g ⁻¹)	t (min)	Sobreviventes (UFC.g ⁻¹)	t (min)	Sobreviventes (UFC.g ⁻¹)
60	9,10 x 10 ⁸	3	1,30 x 10 ⁹	1,33	1,10 x 10 ⁹
90	6,80 x 10 ⁸	5	9,20 x 10 ⁸	1,67	7,10 x 10 ⁸
120	4,00 x 10 ⁸	10	3,30 x 10 ⁸	2	7,20 x 10 ⁸
150	2,80 x 10 ⁸	15	1,10 x 10 ⁸	4	7,60 x 10 ⁷
180	2,50 x 10 ⁸	20	2,70 x 10 ⁷	6	7,70 x 10 ⁶
300	6,40 x 10 ⁷	30	8,40 x 10 ⁵	8	3,50 x 10 ⁵
390	8,20 x 10 ⁶	45	1700	10	3,62 x 10 ³
480	1,32 x 10 ⁶	60	20	12	2,60 x 10 ²

RESP: D_{105oC} = 148 min, D_{115oC} : 7,3 min; D_{121oC} = 1,6 min; z: 7,7 a 9,3°C; F_0 = 11,3 min; F_0 botulismo = 2,4 min; F_0 enzima = 1 min


Observação: Os valores de D foram aproximados, pois foram utilizados pontos da tabela, se for utilizada a curva com software, seriam mais precisos. Façam das duas formas!!

Ex. 4: Concentram-se 10000 kg.h⁻¹ de uma solução de sacarose de 10% até 30% em um evaporador, empregando-se vapor saturado 1,5 bar. A pressão absoluta no espaço de evaporação é de 0,132 bar. O coeficiente global de transferência de calor é estimado em 2000 W.m⁻².K⁻¹. A temperatura de alimentação é 30°C. Os calores específicos das soluções podem ser admitidos como independentes da temperatura e expressos por: C_P= 4,186 – 0,025B, sendo B a concentração da solução em °Brix e C_P em kJ.kg-1.K-1.

Calcular o consumo de vapor e a área de transferência de calor necessária.

RESP: m_H = 7503 kg/h e A = 38,9 m².

- **Ex. 5:** Suco clarificado é concentrado em um sistema de evaporação de triplo efeito de alimentação inversa. Emprega-se para aquecimento do primeiro efeito vapor saturado a 2 bar. A pressão de operação do terceiro efeito é de 25 kPa. Os coeficientes globais de transferência de calor são: $U_1 = 2800 \text{ W.m}^{-2}.\text{K}^{-1}$, $U_2 = 2400 \text{ W.m}^{-2}.\text{K}^{-1}$, $U_3 = 2000 \text{ W.m}^{-2}.\text{K}^{-1}$:
 - (i) Estime a temperatura de ebulição em cada evaporador. Considere a mesma razão da taxa de transferência de calor pela área do trocador (q/A) para cada efeito e despreze as EPE.
 - (ii) Se este sistema for utilizado para concentrar **suco de laranja** de **13% para 40%** e o objetivo da fábrica for atingir uma vazão de **suco concentrado (L) de 1500 kg/h**. Determine a vazão de alimentação (m_F) de suco "in natura", e de vapor total a ser removido.
 - (iii) Considerando as vazões de vapor de saída (m_v) de cada efeito iguais, calcule as áreas dos efeitos 2 e 3.

RESP: $T_{eb1} = 104,6^{\circ}\text{C}$, T_{eb2} : 86,5°C; $T_{eb3} = 64,7^{\circ}\text{C}$; $m_F = 4615,4 \text{ kg/h}$; $m_V = 3115,4 \text{ kg/h}$ $A_2 = 14,86 \text{ m}^2$; $A_3 = 15,17 \text{ m}^2$

Ex. 6: Repita o exercício anterior, considerando a elevação do ponto de ebulição (EPE) em todos os efeitos.