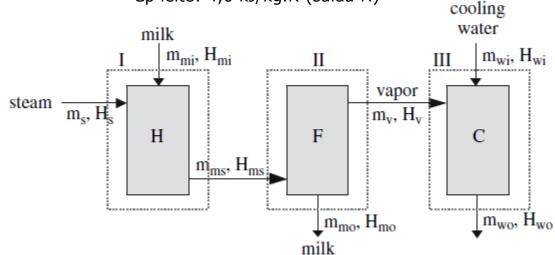
# OPERAÇÕES UNITÁRIAS II

AULA 12: OUTROS PROCESSOS NA INDÚSTRIA DE ALIMENTOS

Profa. Dra. Milena Martelli Tosi

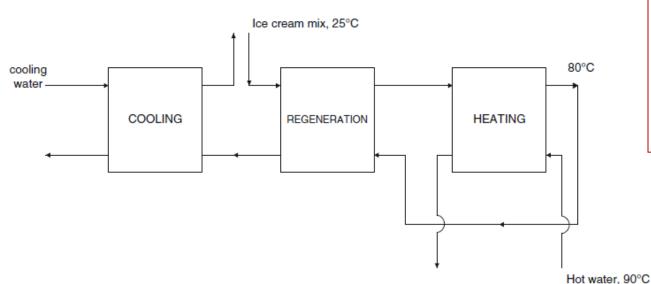
# Infusão de vapor


• 2000 kg/h de leite é esterilizado por infusão de vapor. O leite é aquecido até 145 °C na câmara H e é rapidamente resfriado em uma câmara tipo flash (F). O vapor removido do tanque flash é condensado no trocador C, a fim de evitar a diluição do leite. Calcule a vazão de água fria no trocador C necessária para manter a baixa pressão de vapor requerida no Flash.

#### **Dados:**

Temperatura do leite (H): 40°C

Temp. agua condensador (C): 20 °C Pressão vapor infusão (H): 475,8 kPa


Cp leite: 3,8 kJ/kg.K (entrada H) Cp leite: 4,0 kJ/kg.K (saida H)



| Pressão | Temp. | _ H,    |              |         |
|---------|-------|---------|--------------|---------|
| (kPa)   | (°C)  | (kJ/kg) | λ<br>(kJ/kg) | (kJ/kg) |
| 0,8     | 3,8   | 15,8    | 2493         | 2509    |
| 2       | 17,5  | 73,5    | 2460         | 2534    |
| 5       | 32,9  | 137,8   | 2424         | 2562    |
| 10      | 45,8  | 191,8   | 2393         | 2585    |
| 20      | 60,1  | 251,5   | 2358         | 2610    |
| 28      | 67,5  | 282,7   | 2340         | 2623    |
| 35      | 72,7  | 304,3   | 2327         | 2632    |
| 45      | 78,7  | 329,6   | 2312         | 2642    |
| 55      | 83,7  | 350,6   | 2299         | 2650    |
| 65      | 88    | 368,6   | 2288         | 2657    |
| 75      | 91,8  | 384,5   | 2279         | 2663    |
| 85      | 95,2  | 398,6   | 2270         | 2668    |
| 95      | 98,2  | 411,5   | 2262         | 2673    |
| 100     | 99,6  | 417,5   | 2258         | 2675    |
| 101,33  | 100   | 419,1   | 2257         | 2676    |
| 110     | 102,3 | 428,8   | 2251         | 2680    |
| 130     | 107,1 | 449,2   | 2238         | 2687    |
| 150     | 111,4 | 467,1   | 2226         | 2698    |
| 170     | 115,2 | 483,2   | 2216         | 2699    |
| 190     | 118,6 | 497,8   | 2206         | 2704    |
| 220     | 123,3 | 517,6   | 2193         | 2711    |
| 260     | 128,7 | 540,9   | 2177         | 2718    |
| 280     | 131,2 | 551,4   | 2170         | 2722    |
| 320     | 135,8 | 570,9   | 2157         | 2728    |
| 360     | 139,9 | 588,5   | 2144         | 2733    |
| 400     | 143,1 | 604,7   | 2133         | 2738    |
| 440     | 147,1 | 619,6   | 2122         | 2742    |
| 480     | 150,3 | 633,5   | 2112         | 2746    |

# REGENERAÇÃO DE CALOR

• Um conjunto de trocadores de calor a placas é usado para pasteurizar um mix de sorvete. O mix entra na seção de regeneração a 25°C e deixa a seção de aquecimento a 80°C, quando entra novamente na seção de regeneração e depois é destinado ao resfriamento. Água quente (90°C) é usada no aquecimento contracorrente a uma vazão de 1,5 kg/s e deixa o aquecimento com T=81°C. Se 80% do total de energia é recuperada no regenerador, determine o numero de placas necessárias no regenerador.



#### Dados:

Área placa: 0,8 m² Cp<sub>mix</sub>: 4,0 kJ/kg/K

U<sub>regeneração</sub>: 2500 W/m<sup>2</sup>K U<sub>aquecimento</sub>: 2700 W/m<sup>2</sup>K

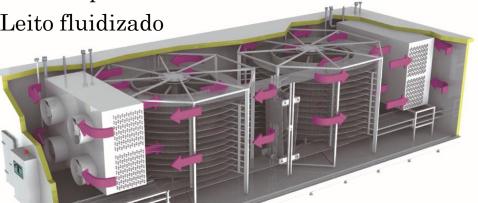
# CONGELAMENTO

Redução da atividade enzimática e dos microrganismos

Redução da atividade de água e da quantidade de água líquida

• Qualidade: tamanho do cristal de gelo

Possível perda de massa em AL não embalados


Tipos congeladores: de placas, imersão ou ar forçado:

Tipo bandeja, descontínuo ou contínuo

Túnel

Túnel espiral

Leito fluidizado



https://www.youtube.com/watch?v=bGjxajL-Raw

https://www.youtube.com/watch?v=afEaVj0W79A



# CONGELAMENTO

• Carga térmica de congelamento = mudança de entalpia para reduzir a temperatura do produto  $(T_i)$  até T abaixo da T inicial de congelamento  $(T_{ic})$ 

- $\Delta H = \text{Calor sensível removido dos sólidos do produto} +$ 
  - + Calor sensível removido da água não congelada +
  - + Calor latente de fusão +
  - + Calor sensível removido da água congelada

No projeto de sistemas de congelamento, é necessário, além das características do produto e suas dimensões, considerar a transferência de calor na superfície do produto: convecção, radiação, evaporação.

o Cinética de congelamento:

$$t^{c} = \frac{1}{\lambda} \left[ \frac{\Delta H_{1}}{\Delta T_{1}} + \frac{\Delta H_{2}}{\Delta T_{2}} \right] \left[ \frac{e}{2h} + \frac{e^{2}}{8k^{c}} \right]$$

$$\Delta H_1 = \rho C_p^u (T_i - \overline{T})$$

$$\Delta H_2 = \rho X_I \Delta_{fus} H + \rho C_p^c (\overline{T} - T)$$

$$\Delta T_1 = 0.5(T_i + \overline{T}) - T_{\infty}$$

$$\Delta T_2 = \overline{T} - T_{\infty}$$

λ: fato de forma (adimensional);

 $T = 1.8 + 0.263T + 0.105T_{\text{m}}$ 

e: espessura do alimento congelado;

h: coeficiente de troca térmica por convecção;

**k**<sup>c</sup>: condutividade do alimento congelado;

X<sub>I</sub>: Fração mássica de gelo.

T: Temperatura média de congelamento;

*T<sub>i</sub>:* Temperatura inicial;

*t*<sup>c</sup>: tempo de congelamento em relação à mudança de fase;

*C<sub>P</sub><sup>u</sup>:* Cp do alimento não congelado

**C**<sub>P</sub><sup>c</sup>: Cp do alimento congelado

Efeito da forma sobre o tempo de congelamento, medida do quanto cada uma das três dimensões espaciais contribui para a TC, situado entre 1 e 3. **Ex: esfera:** perfeitamente tridimensional ( $\lambda$ =3), **cilindro infinitamente longo** ( $\lambda$ =2) e **placa infinita** ( $\lambda$ =1), apenas uma dimensão. Para outras geometrias pode ser estimado.

### Ex. 3 - AULA 12

- Calcular o tempo de congelamento de um bloco de carne de dimensões 1 m x 0,25 m x 0,6 m ( $\lambda$ : 1,18), considerando:
- (i) que o conteúdo inicial de produto é 74,5g/100g;
- (ii) que a fração mássica de gelo formada foi estimada em 56 g/ 100g de produto.

#### Dados:

**k**<sup>c</sup>=1,108W.m<sup>-1</sup>.K<sup>-1</sup>

h: 30 W.m<sup>-2</sup>.K<sup>-1</sup>

**C<sub>P</sub><sup>u</sup>**: 3,52 KJ.Kg<sup>-1</sup>.K<sup>-1</sup>

**C<sub>P</sub>**<sup>c</sup>: 2,052 KJ.Kg<sup>-1</sup>.K<sup>-1</sup>

**T**<sub>i</sub>: 5 °C

**T**: -10 °C

**T**<sub>ic</sub>: -1,75 °C

 $\rho$ : 1050 kg.m<sup>-3</sup>

 $\Delta_{fus}H_{w}$ : 333,22 kJ.kg<sup>-1</sup>

A hipótese de que todo conteúdo de água congela, acarreta naturalmente em uma superestimativa do tempo de congelamento total.

 A fração de gelo formada é de difícil obtenção.