

Deep Learning for Self-driving Car

Background

- Design and test a new algorithm on a real car is:
- Time consuming to set up everything
- Not very safe
- Less convenient
- Most important: Prospect 12 is down!
- So, let's try to use a racing game!

Background

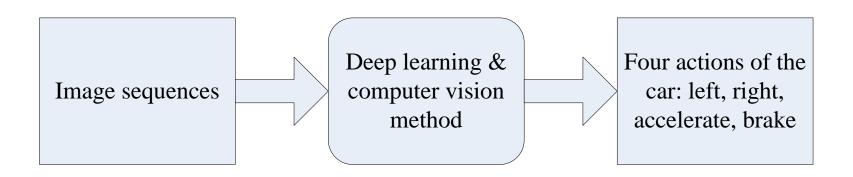
 Let the deep learning vision algorithm drive in a racing game -- TORCS

Why TORCS? Not Need for Speed?

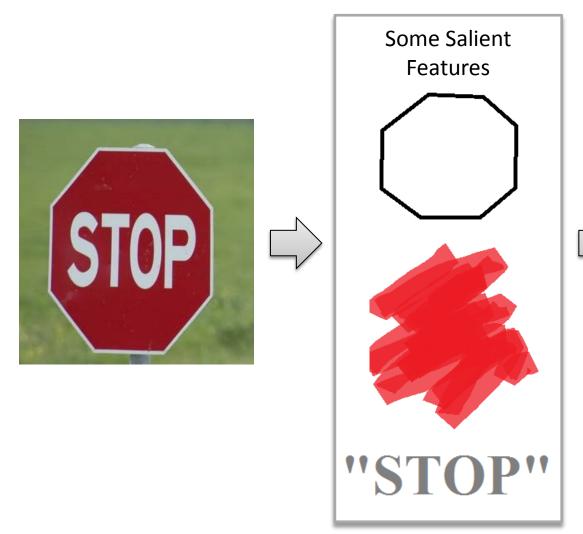
- Open source, so you can access the source code (most important)
- Widely used in artificial intelligence research community
- Good vehicle dynamics and mechanics model
- Easy to start with
- Run on Linux

Original Version: Basic Idea

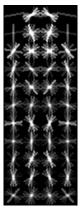
Mapping images to driving actions

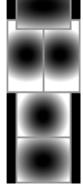


How do we detect a stop sign? It's all about feature!

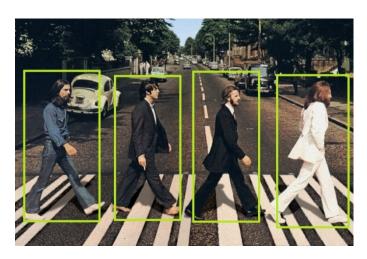


How does computer vision algorithm work? It's all about feature!

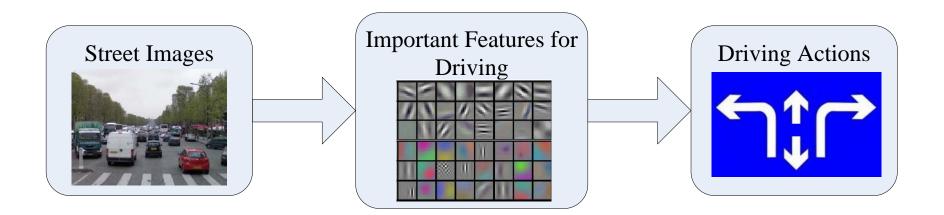




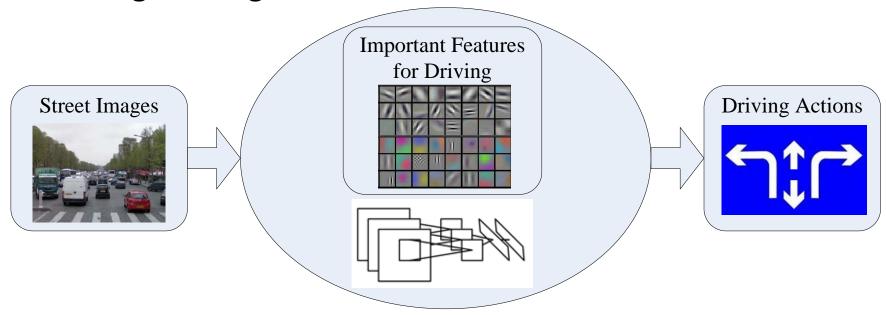
Pedestrian found!!!



- We believe driving is also related with certain features
- Those features determine what action to take next



- Salient features can be automatically detected and processed by deep learning algorithm
- A mapping between features and actions is established during training



Deep Convolutional Neural Network

- ImageNet Classification Challenge
 - 1000 categories
 - 1.2 million training images
 - 50,000 validation images
 - 150,000 testing images
 - Top-5 error rate* of deep learning: 15.3%
 - Top-5 error rate of second best (which is nondeep learning): 26.2%

^{*}Top-5 error rate: the fraction of test images for which the correct label is not among the five labels considered most probable by the model

Deep Convolutional Neural Network (CNN)

 The network structure that achieved the excellent performance in ImageNet Classification Challenge

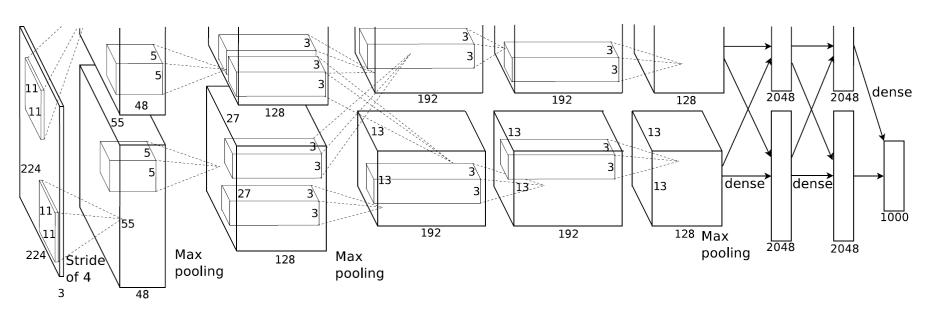
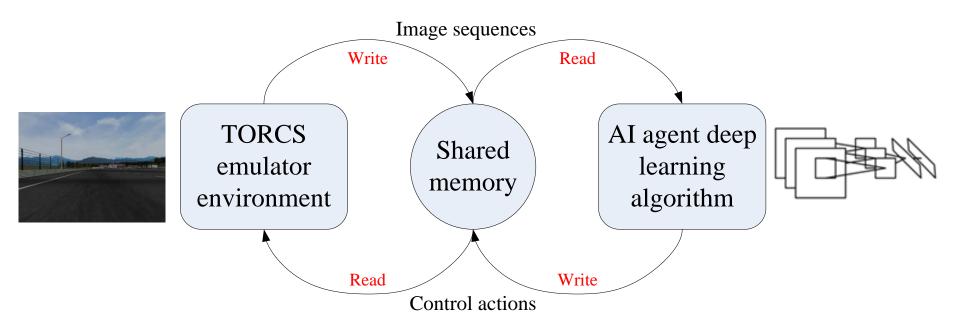


Figure courtesy of Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton

Communications between the TORCS and the AI Agent

Memory Sharing



1st step: driving without other vehicles

- Simplified scene
- No complicated motion (cause no other cars)
- Much easier task
- All the information needed for driving can be encoded in a single frame

Four Tracks Used as Training Set

• The images (x) and the corresponding driving controls (y) are recorded

Six Tracks Used as Testing Set

No overlap with the training set

What does the algorithm do?

- Process the image
- Output steering command based on image content
- Also output desired speed for current road condition
- Feedback the actual speed of the car, and let a speed controller to control the throttle/brake

Test track: Wheel 2

What's next?

- Of course, drive in traffic
- Goal: stay on the track & avoid collision
- Problem: driving with and without other cars are two totally different problems
- Complicated motion is involved
- Challenging machine learning task

But this time, direct learning sucks!

Why?

- Millions of driving scenes, only four types of controls: left, right, accelerate, brake
- We human can do reasoning to differentiate diverse driving scenes and map them to the four actions, but machine learning cannot
- So it's too difficult for machine learning algorithms to learn driving controls directly from complicated driving scenes

So, let's make the task easier for our poor algorithm

How?

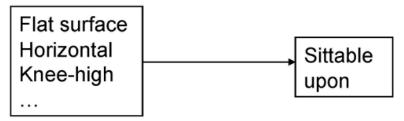
- Extract key parameters from driving scenes with deep learning
- Compute driving control (optimal control) based on those parameters

Direct Perception

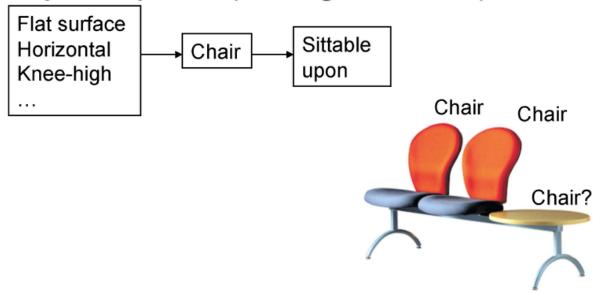
- We can perceive the 3D shape, texture, material properties, without knowing the category of objects.
- But the category of objects also encapsulates about what can we do with the objects

The perception of function

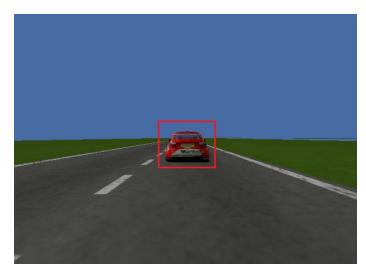
Direct perception (affordances):



Mediated perception (Categorization)



In Driving...



- Ordinary car detection:
 Find a car! It's localized in the image by a red bounding box.
- Direct perception: The car is in the right lane; 16 meters ahead
- Which one is more helpful for our driving task?

In Our Specific Case...

- Let the deep learning algorithm tell us:
- angle: the angle between the car's heading and the tangent of the track;
- toMiddle: the distance between the center of the car and the center line of the track;
- min_dist: the distance between the car and the 1st preceding car;
- lane: the lane of the 1st preceding car

Where to get the training data?

- Training data of the four parameters are collected from the game engine
- For real images, we can get the labels through crowdsourcing, e.g. Amazon Mechanical Turk
- Or measure such parameters with special equipment when collecting the data, e.g. Google Street View
- Or more crazily, train on simulation, test on real car!

Then there comes the demo

So, what's next?

Wow, something real!

Wow, something real!

Q & A