CHAPTER 1 0

Cavity Theory

l. BRAGG-GRAY THEORY

The basis for cavity theory is contained in Eq. (8.27) of Chapter 8. If a fluence &
of identical charged particles of kinetic energy Tpasseg through an interface between
two different media, g and w, as shown in Fig. 10.1a, then one can write for the
absorbed dose on the & side of the boundary

dT
D, = QKE)CJT L (10.1)

D, =& [(d—T> ] (10.2)
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and on the side,

where [(dT/pdx)c,g]T and [(d77pdx), ] 1 are the mass collision stopping powers of the
two media, evaluated at energy 7. Usually we may omit the brackets and subscript
T, evaluation at an appropriate energy T being implied.

Assuming that the value of @ is continuous across the interface (i.e., ignoring

Ckscattering) one can write for the ratio of absorbed doses in the two media adjacent
to their boundary
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FIGURE 10.1. (4) A fluence @ of charged particles is shown crossing an interface between
media w and g. Assuming ® to be continuous across the boundary, the dose ratio D, /D, equals
the corresponding ratio of mass collision stopping powers. (B) A fluence ® of charged particles
passes through a thin layer of medium g sandwiched between regions containing medium w.
Assuming @ to be continuous across layer g and both interfaces, the dose ratio D,/D, is again

equal to the corresponding ratio of mass collision stopping powers.

W. H. Bragg (1910) and L. H. Gray (1929, 1936) applied this equation to the
problem of relating the absorbed dose in a probe inserted in a medium to that in
the medium itself. Gray in particular identified the probe as a gas-filled cavity, whence
the name ‘“cavity theory’’. The simplest such theory is called the Bragg-Gray (B-
G) theory, and its mathematical statement, referred to as the Bragg-Gray relation, will
be developed next.

Suppose that a region of otherwise homogeneous medium w, undergoing irra-
diation, contains a thin layer or ‘‘cavity’’ filled with another medium g, as in Fig.
10.1b. The thickness of the g-layer is assumed to be so small in comparison with the range of the
charged particles striking it that its presence does not perturb the charged-particle field. This
assumption is often referred to as a ‘‘Bragg-Gray condition’’. It depends on the
scattering properties of w and g being sufficiently similar that the mean path length
(g/cm®) followed by particles in traversing the thin g-layer is practically identical to
its value if g were replaced by a layer of w having the same mass thickness. Similarity

of backscattering at w-g, g-w, and w-w interfaces is also implied.

For heavy charged particles (either primary, or secondary to a neutron field),
which undergo little scattering, this B-G condition is not seriously challenged so long
as the cavity is very small in comparison with the range of the particles. However,
for electrons even such a small cavity may be significantly perturbing unless the me-
dium ¢ is sufficiently close to w in atomic number.

Bragg-Gray cavity theory can be applied whether the field of charged particles
enters from outside the vicinity of the cavity, as in the case of a beam of high-energy
charged particles, or is generated in medium w through interactions by indirectly
ionizing radiation. In the latter case it is also assumed that no such interactions occur
in g. All charged particles in the B-G theory must originate elsewhere than in the
f:aVity‘ Moreover charged particles entering the cavity are assumed not to stop in
1t.

A second B-G condition, incorporating these ideas, can be written as follows: The
absorbed dose in the cavity is assumed to be deposited entirely by the charged particles crossing it.
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This condition tends to be more difficult to satisfy for neutron fields than f

especially if the cavity gas is hydrogenous, thus having a large neutron_?r Photo.ns,
cross section. The heavy secondary charged particles (protons, Ol-partiCllnteractlon
coiling nuclei) also generally have shorter ranges than the secondary elecets; e ee-
result from interactions by photons of quantum energies comparable to the Sl:fxttr}::

 kinetic energies. Thus we see that the first B-G condition is the more difficult of the

two to satisfy for photons and electrons, while the second B-G condition is the
difficult to satisfy for neutrons. more

Under the terms of the two B-G conditions, the ratio of absorbed doses in the
adjacen.t medium w to that in the cavity g is given by Eq. (10.3) for each mono-
energetlgcomponent of the spectrum of charged particles crossing g. For a differential
energy distribution @ (particles per cm? MeV) the appropriate average mass col-
lision stopping power in the cavity medium g is
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and likewise, for a thin layer of wall material w that may be inserted in place of g
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- Comk?inix:ng Egs. (10.4) and (10.5) gives for the ratio of absorbed dose in w to that
& which is the B-G relation in terms of absorbed dose in the cavity:
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" pmd;icm;(li)lum g OCC}Jp')rlng the cavity is a gas in which a charge Q (of either zign)
€d by the radiation, D, can be expressed (in grays) in terms of that charge
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where Q is expressed in coulombs, m is the mass (kg) of gas in which Q is produced,
and (W /e), is the mean energy spent per unit charge produced (J/C; see Chapter
2, Section V.B, and Chapter 12, Section VI). By substituting Eq. (10.7) into Eq.
(10.6), we obtain the B-G relation expressed in terms of cavity ionization:

5 = 2(ﬂ> .5 (10.8)
4

m

This equation allows one to calculate the absorbed dose in the medium immediately
surrounding a B-G cavity, on the basis of the charge produced in the cavity gas,
provided that the appropriate values of m, (W /e),, and S, are known.

Note that Q is generally greater than the charge Q" collected from the ion chamber,
because of ionic recombination (as discussed in Chapter 12, Section V), requiring
a correction.

m may be less than the total mass of gas contained in an ion chamber, if some
of the volume is not active in providing measurable charge—for example, if some
of the electrical lines of force terminate on a grounded guard ring. In most cases the
value of m must be inferred from a chamber calibration in a known radiation field,
a subject that is addressed in Chapter 13.

B-G theory also may be applied to solid- or liquid-filled ‘‘cavities’ g, using Eq.
(10.6) to calculate D, from a value of D, measured in some way. For example, me-
dium g might be a thin plastic film that gradually darkens as a known function of
absorbed dose. Thus D, could be determined after an exposure by means of a den-
sitometer measurement. However, it is relatively difficult to satisfy the B-G con-
ditions with condensed cavity media, since the cavity thickness must be only ~0.001
times as great as for a gas-filled cavity at 1 atm to obtain a comparable mass thickness
of g. Thus a 1-mm gas-filled cavity is comparable to a 1-um layer of a condensed
medium.

So long as mS'Z,” is evaluated for the charged-particle spectrum @ that crosses the
cavity, as in Egs. (10.4)-(10.6), the B-G relation requires neither charged-particle
equilibrium (CPE) nor a homogeneous field of radiation. However, the charged-
particle fluence &, must be the same in the cavity and in the medium w at the place
where D, is to be determined.

If CPE does exist in the neighborhood of a point of interest in the medium w, then
the insertion of a B-G cavity at the point may be assumed not to perturb the *‘equi-
librium spectrum’” of charged particles existing there, since by definition a B-G
cavity satisfies the B-G requirements. Thus a B-G cavity approximates an evacuated
cavity in this respect. The presence of an equilibrium spectrum of charged particles
allows some simplification in estimating ®, and hence mS‘;, as will be seen later in
Spencer’s derivation of the B-G relation.

The medium w surrounding the cavity of an ionization chamber is ordinarily just
the solid chamber wall itself, and one often refers to the B-G theory as providing
a relation between the doses in the gas and in the wall.

II. COROLLARIES OF THE BRAGG-GRAY RELATION

ll. COROLLARIES OF THE BRAGG-GRAY RELATION

Two useful corollaries of the B-G relation can be readily derived from jt. T
relates the charge produced in different gases contained in the same Char]ni) he ﬁTSt
the second relates the charge in the same gas contained by different chambzrr, v‘\”‘:;;ie
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A. First Bragg-Gray Corollary

A B-G cavity chamber of volume ¥ with wall medium w is first filled with gas g, at
density py, then with gas g, at density p,. Identical irradiations are applied produﬂna
charges Q, and Q,, respectively. The absorbed dose in gas g can be V\;ritten as s

— Q w
D, =D - g — 1
1 w mSw p1V< ¢ >1 (109)

and the dose in gas g, as

_ s 0, w
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The ratio of charges therefore becomes

Qo pV (Wi, 5%

Q "oV Wiy, S5t A
which reduces to the first B-G corollary:
Q, 0y (Wle =
_p (Wl <, (10.12)
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Note that Eq. (10.12) does not depend explicitly upon the wall material ), im-
plying that the same value of Q,/Q, would be observed if the experiment were re-
peat.ed with different chamber walls. This is true as long as the spectrum & ,-of charged
par'tlcles crossing the cavity is not significantly dependent on the kind of wall ma-
terial. For example, the starting spectrum of secondary electrons produced in dif-
.ferent V\fall media by y-rays is the same if the y-energy is such that only Compton
Interactions can occur. Although different wall media modify the starting electron
spectrum somewhat differently as the electrons slow down (to be discussed in Section
.HI), the resulting equilibrium spectrum that crosses the cavity in different thick-walled
10n chambers is sufficiently similar that Q,/Q, is observed to be nearly independent
of the wall material in this case. ’ P

B. _Second Bragg-Gray Corollary

é;llrslgél;(gas(f of density p'is contained in two B-G cavity chambers that have thick

irradiatioc::: 1fng the maximum charged—parti?le range), and that receive identical

bes b 10 penetrating x- or y-rays, producing CPE at the cavity. The first cham-
§ a volume V; and wall material w,, the second has a volume V, and wall w,.

The abs i
orbed dose in the wall of the fi j i
. r .
Hilstar, o st chamber, adjacent to its cavity, can be
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where ¥ = photon energy fluence,

(Men/P),, = mean mass energy-absorption coefficient of wall w, for those photons,
D, = absorbed dose in gas g in the first chamber,
Q, = charge produced in the first chamber.

The corresponding equation for the second chamber is

1
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The ratio of the ionizations in the two chambers is obtained from Egs. (10.13)
and (10.14) as

=2 _ 72 \Wen Flwy  mY 10.15
0V (el S (10.13)

where the constancy of (W/e)g for electron energies above a few keV allows its can-
cellation.

A further simplification of the final factor to ,,Sff,; can be made only if the charged-
particle spectrum @ crossing the cavity is the same in the two chambers [see Egs.
(10.4)-(10.6)]. The Compton-interaction case cited in the preceding section allows
such a simplification, for example. If such a cancellation of stopping powers thus
eliminates g from Eq. (10. 15), the same value of Q,/Q, should result irrespective of
the choice of gas.

An equation similar to (10.15) can be obtained for neutron irradiations in place
of photons by substituting kerma factors F, for the mass energy-absorption coeffi-
cients [see Eq. (2.9a)]:

1% s Cw1 §774
& _ Y2 (En)wz mé'g . L/e)l (10.16)
Ql Vl (Fn)w1 mS;}2 (W/€)2

The ratio W/e may have to be retained here if , and w, differ sufficiently to pro-
duce heavy charged-particle spectra that have somewhat different W /¢ values even
in the same gas. Otherwise it can be canceled as in Eq. (10.15).



