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a b s t r a c t

Even though the main steps of preprocessing and data analysis in liquid/gas chromatography coupled to
mass spectrometry (MS) have been frequently reviewed in recent years, little attention has been paid to
the initial processing of these data, from mass detection and centroiding to the use of the fundamental
definitions, such as resolution. This article presents a current approach to the decomposition of the mass
spectrum into mass peaks and the estimation of mass-centroid positions. We discuss recommendations
on the use of fundamental definitions. We introduce the topological terms of distinguishability and
discriminability to differentiate between the theoretical ability of a detector to distinguish adjacent MS
peaks, and what can be achieved in practice.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

Knowledge of the characteristics of the measurement process
itself is crucial in any processing and analysis of measured data.
Ignorance of these characteristics and their uncertainties will be
propagated through the processing computations and may
subsequently lead to incorrect interpretation [1,2]. One of the most
cautionary examples in history was the destruction of NASA’s
spacecraft Mars Climate Orbiter during orbit insertion because of
mismatch between units [3]. The mathematical abstraction of
any characteristic is described via attributes. Unfortunately, some
of the attributes are often improperly interchanged even in recom-
ll rights reserved.

ystems, University of South
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mendations and regulatory documents [4,5], so it is of the utmost
importance to define the exact meaning of each term before use.

Liquid chromatography (LC) or gas chromatography (GC)
coupled with mass spectrometry (MS) is widely used in many
chemical and biochemical analytical set-ups, especially in the so-
called omics sciences, and the techniques are used as key tools
for unraveling biochemical pathways within systems biology
[6–8]. The preprocessing of these types of data, including feature
detection, alignment and normalization, with subsequent multi-
variate data analysis, is an essential part of understanding and
interpreting the results. The output from LC/GC-MS, and thus the
input for data processing and data analysis, might be separated
into three distinct groups of attributes:

� attributes of the obtained data, e.g., retention time, mass-
to-charge ratio, intensity (counts), and derived attributes,
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such as TIC (total ion current chromatogram), number of
time scans, maximal intensity, and mass range;

� attributes of the measured sample, e.g., the sample origin
or a description of the preparation procedure, which are
usually relevant only for analysis and interpretation, not
for data processing [9]; and,

� attributes of the measurement device and its abilities, which
are the fundamental attributes from the theory of measure-
ment [10].

In LC/GC-MS, the retention or elution time (rt) is the main
attribute in the chromatographic domain, while the mass-
to-charge ratio (m/z, or MZ) is the main attribute in the MS domain.
Whereas the units of the former attribute are unambiguously
defined, the mass-to-charge variable is not. This variable is fre-
quently expressed in unified atomic mass units, recommended
by IUPAC [11,12], but Dalton and Thomson units (Th, [13]) are also
used. The unified atomic mass unit and the Dalton unit are not part
of the SI system, but are recognized by CGPM [14], so they will con-
tinue to be used in appropriate contexts [12]. Th is not an SI unit,
and it has not been accepted by IUPAC. Discussions are still
ongoing in the MS community about which units should be used
[15–20].

Resolution and resolving power are frequently used terms in
LC/GC-MS analysis, which are very often interchanged, even
though the conflict in terminology has already been reported
[4,5], and different definitions are still supported [21–27]. A similar
challenge within optical resolution was reviewed by den Dekker
and van den Bos [28]: ‘‘In applied science, resolution has always been,
and still is, an important issue. Since, it is not unambiguously defined,
it is interpreted in many ways’’. Thus, this confusion is not specific to
the MS field, but has a generic perspective.

Even though the main steps of preprocessing in LC/GC-MS anal-
ysis have been frequently reviewed in recent years
[2,4,9,10,15,18,23,24], little attention has been paid to the initial
processing of these data, from mass detection and centroiding to
decisions related to mass resolution. The choices made in this
initial part of analysis will strongly affect the end result of the anal-
ysis, so, in this article, we provide an overview and a summary of
definitions and recommendations for the initial part of preprocess-
ing in LC/GC-MS. Section 2 describes the mathematical approaches
that are widely used for LC/GC-MS data pre-processing. In Sec-
tion 3, we discuss different criteria for practical evaluation of such
parameters from the theoretical recommendations/definitions, as
well as the definitions themselves. In Section 4, we introduce the
formal definitions of the fundamental attributes in MS from a
topological space point of view to advocate some of the recom-
mendations from Section 3.
2. Mass assignment and centroiding

A typical dataset from LC/GC-MS measurements is represented
as a discrete set of points in a discrete three-dimensional space
that is defined by discrete axes, namely retention time (rt),
mass-to-charge ratio (m/z), and intensity (counts), as shown in
Fig. 1. Analytes (components of the system being analyzed) elute
at specific time points from the chromatographic column and enter
the MS ionization chamber. The time delay of elution of the differ-
ent analytes is caused by physicochemical interactions between
the stationary phase on the chromatographic column, the analytes
and the mobile phase. The intensity at each detectable m/z is reg-
istered inside the MS detector and its value represents the approx-
imate amount of ionized molecules of each individual m/z detected
at the exact rt. In practice, the continuous signal is sampled using
an analog-to-digital converter, a non-ideal device with various
physical limitations. All real signals are discretized, quantized,
and reduced to a discrete finite set of values. Discrete-value signals
are always just an approximation to the original continuous-value
signal [29].

One ‘‘slice’’ of the 3D data set selected at one specific rt is a mass
spectrum, as an accumulation of all detections on the MS detector
during a very short time period. The detector requires some time
interval to provide the detection and to recover for the next count-
ing. The mass spectrum represents a discretized distribution of
ions by m/z. Unfortunately, even the beam of ionized molecules
at the same m/z value contains ions with different vectors of kinetic
energy, so the trajectories of the ions are distributed in some width
of the beam and will contribute to broadening of the mass peak on
the detector [4].

The mass spectrometer can record mass spectra in two different
modes: profile mode and centroid mode. While the profile (or qua-
si-continuous) mode preserves the shape of the mass peak (within
limits of discretization), the centroid mode records only a weighted
average of the mass peak. This is shown in Fig. 2 for different types
of mass spectrometer. Ideally, when symmetrical and smooth peak
shapes are produced, centroid positions are equivalent to the posi-
tions of the local maxima, and the peak borders are equivalent to
the local minima. However, if there are any contributions from
adjacent or overlapping components, the peak shape is distorted
[30,31]. Magnetic sector instruments produce triangular or Gauss-
ian centroid curves, while those from quadrupole analyzers are
trapezoid or flat-topped. Ion traps and time-of-flight detectors
tend to give centroid peaks with sharper apexes or with increased
widths at the base [30]. The mass domain in cyclotron resonance
and Orbitrap mass spectrometers results after inverse Fourier
transformations of the frequency domain, so the mass peak shapes
are represented by sinc (cardinal sine) shapes with Cauchy-
Lorentzian envelopes [32].

As all subsequent data analysis of LC/GC-MS data, from noise
reduction to feature extraction, presumes centroided values, the
proper conversion from profile to centroid mode is a fundamental
issue in pre-processing. The computation of the centroid position C
on the m/z axis is defined in Equation (1):

C ¼
Xb

a
ðy;mÞ=

Xb

a
ðyÞ ð1Þ

where m represents the m/z position, y represents the intensity,
Pb

a

(y) represents the area of the mass peak, and a and b represent the
borders of the mass peak.

Thus, in order to calculate accurate centroid values, the peak
position, the peak shape, and the peak borders have to be properly
determined. There are several basic approaches available to deter-
mine these features. One way is to fit a proper distribution function
according to the individual ion beam. The most common approach
is to create a class of possible shape models (e.g., triangular or
Gaussian models) and to choose the most appropriate. However,
even when understanding the underlying physical and chemical
properties of the MS instrument, it is a non-trivial task to select
the proper shape model. Hence, regression analysis is frequently
used [33] to find the model using the minimal error criterion
between detected and modeled peak shapes. Unfortunately, any
evaluation of the parameters used can only help to decide which
shape of the considered shapes is ‘‘optimal’’ [34]. Very strong fit
still does not mean that the best distribution function was consid-
ered [35].

Two parameters are necessary to fit a symmetric shape distri-
bution: the location and the scale parameters of the fitting func-
tion. The location parameter refers to the position (apex) of the
maximal or mode value of the mass peak (which ideally already
is the centroid position). The scale parameter represents a measure
of the spread of the distribution (or standard deviation). In other



Fig. 1. A typical 3D representation of a blank LC-MS measurement using TopView 1.8 software [49,50] (left plot). The total ion current (TIC, upper right plot) chromatogram and a selected mass spectrum
(lower right plot) were obtained using Mzmine 2.2. [51].
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Fig. 2. Differences between profile (top) and centroid (bottom) data obtain with an ion-trap detector (pig blood), a quadrupole detector (beer), a QTOF detector (phenolic acids), and an Orbitrap detector
(MeOH), respectively.
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Fig. 3. Peak-shape fitting of two mass peaks, coumaric acid (left) and sinapic acid (right), using Gaussian and Laplacian distribution fitting, respectively. Data were obtained
by LC-MS with QTOF detection.

Fig. 4. Mass spectrum smoothing by window functions. (A) Raw mass spectrum (beer) smoothed using a Gaussian apodization filter (scale parameter: 0.4 m/z units). (B)
Comparison of Gaussian and triangular fitting using the same scale parameter (0.4 m/z units) (C) Comparison of Gaussian fitting with different window lengths.
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words, the scale parameter is related to the width of the beam and
to the m/z interval delimited by peak borders a and b. Fig. 3 illus-
trates peak-shape fitting using Gaussian and Laplacian distribution
fitting, respectively.
Fig. 5. Estimation of mass-peak-centroid positions using
Asymmetric (skewed) and noisy peaks require smoothing or
reshaping. Usually, these transformations are obtained by spline
or wavelet functions. In practice, such functions are always dis-
crete apodization filters with specified window lengths that are ap-
wavelet transformation (right) of raw signals (left).



Table 1
Three IUPAC recommendations for the term resolution in mass spectrometry [49]: the so-called energy definition, the peak valley definition, and the peak width definition

R05318 resolution in mass spectroscopy:

energy By analogy with the peak width definition for mass resolution, a peak showing the number of ions as a function of their translational energy
should be used to give a value for the energy resolution.

10 per cent valley
definition

Let two peaks of equal height in a mass spectrum at masses m and m � Dm be separated by a valley which at its lowest point is just 10 per
cent of the height of either peak. For similar peaks at a mass exceeding m, let the height of the valley at its lowest point be more (by any
amount) than ten per cent of either peak height. Then the resolution (10 per cent valley definition) is m/Dm. It is usually a function of m. The
ratio m/Dm should be given for a number of values of m.

peak width definition For a single peak made up of singly charged ions at mass m in a mass spectrum, the resolution may be expressed as m/Dm where Dm is the
width of the peak at a height which is a specified fraction of the maximum peak height. It is recommended that one of three values 50%, 5% or
0.5% should always be used. For an isolated symmetrical peak recorded with a system which is linear in the range between 5% and 10% levels
of the peak, the 5% peak width definition is technically equivalent to the 10% valley definition. A common standard is the definition of
resolution based upon Dm being Full Width of the peak at Half its Maximum height, sometimes abbreviated ’FWHM’. This acronym should
preferably be defined the first time it is used.

Table 2
IUPAC recommendations for the terms resolving power in mass spectrometry (R05321) and mass resolving power in mass spectrometry (M03730) [49]

R05321 resolving power in mass spectrometry

The ability to distinguish between ions differing in the quotient mass/charge by a small increment. It may be characterized by giving the peak width,
measured in mass units, expressed as a function of mass, for at least two points on the peak, specifically at fifty percent and at five percent of the maximum
peak height.

M03730 mass resolving power in mass spectrometry
Commonly and also acceptably defined in terms of the overlap (or ’valley’) between two peaks. Thus for two peaks of equal height, masses m1 and m2, when
there is overlap between the two peaks to a stated percentage of either peak height (10% is recommended), then the resolving power is defined as m1/
(m1 �m2). The percentage overlap (or ’valley’) concerned must always be stated.
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plied piecewise along the axis of the original signal. The window of
the filter iteratively moves along the first dimension of the signal
(which is the m/z axis for mass spectra), subsequently producing
a transformed or centroided signal.

Numerous wavelet filters have been introduced in the past cen-
tury. Some typical wavelet filters include the Bartlett (triangular)
filter, the Hamming filter, the Gaussian filter, the Blackman filter,
and the Ricker filter (frequently denoted the Mexican hat). The
crucial issue of the wavelet approach is to select an appropriate
filter function and subsequently to decide the length(s) of the
window. This is illustrated in Fig. 4. The window length of the
wavelet function is comparable with the scaling parameter of the
fitting function, related to the mass peak width defined by the m/
z position and the peak borders [a and b in Equation (1)]. The
output of a wavelet transformation can be the composition of
many window functions instead of only one, as shown in Fig. 5.

If the shape of the mass peaks is unknown, spline transforma-
tions are often better than wavelet transformations. The spline
transformation is a polynomial function approximation that is able
to approximate an a priori unknown shape by a polynomial func-
tion of a low degree. While the lower degree preserves the raw
shape very well, peak smoothing is likely to happen spontaneously.
However, at higher degrees the approximated function might pro-
duce artificial signal oscillations on the peak borders (Runge’s phe-
Table 3
Relation of full width at half maximum
(FWHM) and scale parameter of five common
distribution functions (http://mathworld.wol-
fram.com/FullWidthatHalfMaximum.html)

Peak shape Multiplier

Blackman 0.810957
Lorentzian 2
Gaussian 2 sqrt(2 ln(2))
Hamming 1.05543
Bartlett 1
nomenon). Spline transformations provide piecewise polynomial
approximations, meaning that the whole peak is decomposed into
short intervals. Each interval is then fitted by its own polynomial
function. The total shape fit therefore consists of multiple polyno-
mial pieces. While the interpolation is excellent inside the peak,
extrapolation produces unusable values, such as oscillations at
the peak borders.

Spline transformation preserves the positions of the peak
maxima and minima. The most used and well cited is the
Savitzky-Golay filter [38], which provides an approximation of
the underlying peak shape by averaging polynomial windows of
higher orders (usually fourth-degree polynomials). This approach
was originally developed for spectroscopic applications in the
time domain, and the approach is almost unknown in other scien-
tific areas where filtrations, fittings, approximations or interpola-
tions are required [37]. As was pointed out by Persson and
Strang: ‘‘it is not a tremendously powerful filter, but its virtues are
simplicity and speed’’ [39].

As discussed in this Section, distribution fitting, wavelet or
spline transforms are different tools to estimate the mass-peak
centroid and its border positions. The performance of each method
strongly depends on the input-scaling parameter or the window
length, which thus directly corresponds to the mass-peak width.
Hence, the decision to use any of these techniques might not be
as essential as knowing the distance between two valid maxima
or minima on the mass axis [40]. The proper centroid position va-
lue, C, therefore arises from the definition of mass-peak width,
which corresponds to the determination of resolution and resolv-
ing power.
3. Resolution versus resolving power

The IUPAC Gold Book [36] offers three approximately equiva-
lent descriptions of the term ‘‘resolution’’ (R05318) in MS and
two descriptions for the terms ‘‘resolving power’’ and ‘‘mass
resolving power’’ (R05321, M03730). The recommendations are



Fig. 6. IUPAC R05318 recommendation and the relationship between the peak valley and peak width definitions. The left column explains the analogy of 5% fraction and 10% peak valley for peaks of equal
heights. The middle column extends the analogy to peaks of non-equal heights. The right column explains the practical difference between the resolution evaluated via peak valley and full width at half
maximum (FWHM). Additional details are in the main text.
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often cited, described, or interpreted [21–24,41]. Let us have a look
at the expressions and examine their meaning and consequences
(Tables 1 and 2).

The first description of resolution (R05318) refers to only the
resolution energy as a value derived from a peak showing a num-
ber of ions (intensity given in counts) as a function of their trans-
lational energy [23,36,41]. Next, the valley definition states that if
two mass spectrum peaks at masses m - Dm and m of equal
heights are separated by a valley that, at its lowest point, is equal
to 10% of the height of the peaks [30,48], then the resolution is
provided by Equation (2):

R ¼ m=Dm ð2Þ

Here, resolution R is a function of m. Thus, it is not a constant
value across the dynamic range of the m/z axis, a fact that is often
overlooked [40]. The value of the ratio m/Dm represents an inter-
esting theoretical property: if each peak has a width that equals
Dm (or more precisely, if the distance between each two consecu-
tive valid peak maxima equals Dm), then, on the range between 0
and m, there could be exactly R distinguishable peaks. However,
Dm might vary according to m.

The peak width definition for a single peak expresses Dm as the
width of the peak at a height that is a specified fraction of the max-
imum peak height (50%, 5%, or 0.5% is recommended). It is impor-
tant to pinpoint that Dm is not the peak width. More precisely, Dm
is the peak width at a given fraction of the maximum, and the frac-
tion used should always be specified. According to the valley defi-
nition, Dm is the difference between m/z positions of two maxima,
for which the 10% valley value is fulfilled. The valley definition of
Dm is ‘‘technically equivalent’’ [36,41] to the peak width at 5% of
the peak height, if and only if the peak is isolated and symmetrical,
and that linearity is guaranteed between the 5% and 10% levels of
the peak height. However, isolated peaks are not frequently
encountered in real mass spectra; and, symmetry is often distorted
by random noise contributions. The linearity condition refers to the
linearity [42] of the sensor response [29,43]. Then, the ‘‘peak
width’’ used in the valley definition is equal to the peak width at
5% of the height of an isolated symmetrical peak.

The IUPAC peak width definition states a common standard as
the 50% fraction, the full width at half maximum (FWHM), some-
times improperly denoted ‘‘half width’’ [36]. The relation between
the FWHM and the scale parameter of an ideal Gaussian peak is
given in Equation (3):

FWHM ¼ r2
ffiffi
ð

p
2 lnð2ÞÞ ð3Þ

where r is the standard deviation. Examples of relations for typical
peak shapes are provided in Table 3. But why is it important to con-
sider which peak fraction is the most meaningful? The valley defi-
nition of mass resolution is contingent upon two adjacent, mass
peaks of equal size and shape – almost never the case experimen-
tally [44]. However, the peak-width definitions are uncertain. Each
fraction becomes valid only after the approximation: we want the
Dm, which can be obtained from the approximated shape. However,
to approximate the shape, we need to know the value of Dm (or
scale parameter or window length) as the input parameter.

Fig. 6 shows six simple examples on artificially created discrete
mass peaks. The examples interpret the IUPAC definitions on reso-
lution together with several important practical consequences. The
first example (Figs. 6A–D) compares the valley and the 5%
peak-width definition for peaks of equal heights. The second and
the third examples (Figs. 6E–H) extend the definitions to peaks
of different heights. Finally, the fourth, fifth and sixth examples
(Figs. 6I–L) compare the valley definition with the FWHM.

A single isolated symmetrical Gaussian peak, m, with its cen-
troid at m/z = 102 is plotted (solid line) at the beginning of the first
example (Fig. 6A). The 5% fraction (dashed line) of the peak height
provides a peak-width value of exactly 1 m/z unit. Then, the reso-
lution (R) equals 102/1, according to Equation (2). The 50% fraction
(FWHM, dotted line) could then also be evaluated.

In Fig. 6B, another symmetrical Gaussian peak, m, with centroid
at m/z = 101 is added (dotted line). The new peak has exactly the
same height, shape, and therefore also the same scale parameters
and peak width at the 5% fraction (dashed line) as the former peak.
The two peaks intersect exactly at the position of the 5% fraction
level. The presence of the two mass peaks will be detected as a
superimposed signal (solid line), as shown in Fig. 6C. The 5%
fraction (dashed line) of the isolated peak is now below the valley
between the two peaks.

However, as shown in Fig. 6D, the value of the valley of the
superimposed signal (solid line) at its lower point is exactly at
the 10% fraction (dashed line) of the peak height. While the dis-
tance between the centroids equals the 5% peak width (102 –
101 = 1), the 5% peak width of the isolated peak and the distance
fulfilling the 10% valley are equivalent. This is why the 5% fraction
of an isolated symmetrical peak is technically equivalent to the
valley definition.

The situation of two adjacent peaks with equal height is unu-
sual in real experiments [44]. The second example (Fig. 6E) starts
with an isolated symmetrical mass peak with the same centroid
and scale parameter as the peak from Fig. 6a. However, the height
of the peak is only half that of the former peak.

Then, another peak, with similar characteristics to those in
Fig. 6b, is added with its centroid at m/z = 101 (Fig. 6F).

The superimposed signal (Fig. 6G) is detected by the MS detec-
tor. The valley of the superimposed signal between the peaks is be-
low the 10% fraction of the highest peak, and it is also above the
10% fraction of the lower peak, so the valley should be considered
valid and the distance between the peak maxima is again equal to
the 5% peak width.

What then if the height of one of the peak is much lower than
the height of the second peak? The third example (Fig. 6H) illus-
trates a modified situation of Fig. 6g. The mass peak with a cen-
troid at m/z = 102 is exactly 20 times lower than the mass peak
with its centroid at m/z = 101. The scale parameters and the posi-
tions remain unchanged, and the 102 mass peak height is even
below the 10% fraction of the 101 mass peak. However, there is
still an observable valley, and, again, as shown in Fig. 6g, the val-
ley is below the 10% fraction of the higher peak, and above the
10% fraction of the lower peak, so the valley should be considered
valid.

This means that the 10% valley definition could be extended
for any two adjacent peaks, without the condition of equal height.
If the valley between the peaks is above the 10% of the lower
peak and simultaneously the valley is below the 10% of the higher
peak, then the distance Dm between peak maxima approximately
equals the peak width at the 5% fraction of the isolated peak.
The order of peaks is irrelevant, but the value of the IUPAC resolu-
tion always has to be computed from the peak of the higher m/z
position.

The fourth example (Fig. 6I) illustrates a situation where the
second peak is half the height of the first peak. The FWHM now
has the same value as Dm computed via the valley definition in
all previous examples. Resolution R [as provided in Equation (3)],
computed using the FWHM, produces the same value as the
resolution using the 10% valley of Fig. 6d. Numerically, the same
resolution is obtained.

Graphically, however, the interpretation is somewhat different.
The superimposed signal on the MS detector has no valley, as
shown in Fig. 6J. In other words, the two peaks are indistinguish-
able. The individual peaks have bigger scale parameters, as they
produce the FWHM of the same value as the valley or 5% Dm in
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Fig. 6d. Obviously, the meaning of 5% Dm and 50% Dm are not anal-
ogous. 5% Dm is always 2.0792 times FWHM for Gaussian shapes.
Moreover, the resolution values computed from differently defined
Dm always have to be interpreted differently. The details will fol-
low in the two subsequent examples.

The next example (Fig. 6K) introduces a case where the valley
between the peaks becomes observable in the superimposed sig-
nal. If the scale parameter was to be just a little bit higher, the val-
ley disappears. The FWHM values of both peaks could be easily
estimated. While there are two distinct apexes, the half width of
the half maximum could be computed and then multiplied by 2.
However, the peaks are so close that the maximum of the superim-
posed signal is not on the same m/z position as the maxima of the
individual peaks, but slightly shifted towards them. The estimated
FWHM values are 0.8142 m/z for the lower peak and 0.9590 m/z for
the higher peak, whereas the FWHM of the lower individual peak
was 0.8242.

It is thus important to realize that the peak-width definition de-
scribes isolated peaks, which is clearly not the case here. Moreover,
the IUPAC peak definition states that the resolution may be ex-
pressed as m/Dm. It says nothing about how to distinguish or to
separate these two peaks. The instruction about ‘‘separation’’ is
in the valley definition, but the 10% condition is far from being ful-
filled in this example. What if the valley is not a real valley, but the
product of the noise contribution? Unfortunately, none of the rec-
ommendations helps in the decision here.

The last example (Fig. 6L) illustrates the worst-case scenario,
where two individual peaks of equal height intersect or overlap.
Both peaks are sufficiently broad that the superimposed signal pro-
duces a new (false) maximum instead of a valley between the two
maxima. In this case, it is impossible to distinguish if the detected
signal is the superimposition of two peaks or if it is an individual
peak. The FWHM of the superimposed peak was calculated to
2.0174 m/z.

Generally, the FWHM is used to describe the measurement of a
peak width when that peak does not have sharp edges. However,
the scale parameter does not describe the total width of the profile,
as it theoretically extends forever [45]. The width across the profile
when it drops to half of its maximum is a simple, well-defined
number that can be used to compare the measurements obtained
under different conditions. The only problematic issue of the
FWHM is in the computation of the resolution. R = m/50% Dm) is
approximately double R = m/(5% Dm). The difference is so large be-
cause 5% Dm and 50% Dm represent different characteristics of the
measurement. While 5% Dm is equivalent to the distance between
the maxima, the interpretation of the 50% Dm is not so simple.

It is common to express any variable (in this case, m) as the
mean ± z proportions of standard deviation. The interval expressed
as the FWHM (2z = 2.355r) covers only 84.27% of the peak values.
However, if the FWHM is considered as the ± Dm concept, then the
interval of 2z = 2FWHM = 4.71r covers 99.53% of the peak. Thus,
the analogy of the 5% and 50% fraction peak widths could be
approximated as 5% Dm = 2 (50% Dm). The IUPAC resolution
(R05318) is then defined as in Equation (4):
R ¼ m=ð5%DmÞ ¼ m=ð2FWHMÞ ð4Þ

The term ‘‘resolving power’’ describes the ability to distinguish
between ions differing in the quotient of mass/charge by a small
increment. The IUPAC description of resolving power in MS
(R05321) states that the resolving power might be characterized
by the peak width at 50% and at 5% of the maximum peak height.
In other words, the resolving power is equal to the FWHM from the
peak-width definition or the Dm from the valley definition.

The IUPAC description of the mass resolving power in MS
(M03730) refers directly to the valley (10% is recommended, and
the value used must always be stated) for two peaks (m1, m2) of
equal height, as shown in Equation (5):

m1=ðm1�m2Þ ð5Þ

There is thus a deep inconsistency in these terms of resolving
power. While the resolving power in R05321 is expressed as the
peak width (at a certain fraction), the resolving power in M03730
is expressed as the ratio of the peak mass over Dm. But, if m = m1
and m-Dm = m2, the same ratio was already referred to as the
resolution (in R05318), as shown in Equation (6):

Resolution ¼ m=Dm ¼ m1=ðm1�m2Þ ð6Þ

So what does the resolving power really mean? Is it the peak
width or the ratio? The literature does not provide a conclusive
explanation. Boyd et al. describe the resolving power as a property
of the instrument and the resolution as ‘‘the separation between
similar m/z values actually achieved in a real mass spectrum’’ [4].
Resolving power is then explained using both the valley and the
peak-width definitions, where the resolving power is the ratio
from Equations (2) or (5). Even the IUPAC sponsored project to up-
date the Standard Terms and Definitions for Mass Spectrometry
[46] (the so-called Mass Spec Terms Wiki) reports the term Resolu-
tion in MS as a problematic term. The main part of the literature
[21–24] in the MS field uses resolution as the ratio m/Dm and
refers to the IUPAC definition R05318. However, in other fields of
physics and chemistry, the ratio m/Dm is usually described as the
resolving power and Dm as the resolution, which has also been
adopted in some MS literature [25–27]. In the IUPAC recommenda-
tions, this definition is consistent for microscopy and optical
spectroscopy. Busch [44] recommended using the meaning com-
mon in most fields, where resolution is the difference Dm, while
the resolving power is the ratio R. The great confusion between
these two terms could be easily avoided by distinct, clear
definitions.

4. Discriminability and distinguishability

Two other terms, frequently encountered in MS, are ‘‘discrimi-
nability’’ and ‘‘distinguishability’’. In order to investigate these
terms, and to relate them to those already proposed, it is natural
to include terms from topology, which is one of the unified
branches of mathematics, and is the study of qualitative character-
istics of spaces. While topology generalizes shapes via abstraction,
it also offers more formal definitions to describe some structural
characteristics.

In topology, separability is defined as the ability to divide the
measurable space into countable dense subsets [46]. Every topo-
logical space is already dense in itself, so the 10% valley describes
one of many possible designs of mass spectrum separation and is
designated resolution.

Also, topological discriminability is the quality to perceive or to
discern differences between two similar objects. While the mass
spectral values represent the coordinates in two domains (mass
and intensity), the shape of each mass-intensity pair could be con-
sidered a point in topological space. Discriminability therefore
quantifies not only position, but also distance. The formal defini-
tion of discriminability is exhaustive, but the interpretation is
rather simple: ‘‘Two objects are discriminable if there is an open sen-
tence that is satisfied by one of the objects and not the other. If all the
objects of domain are discriminable, then each of them uniquely
satisfies infinite conjunction. Each real number is uniquely determined
by the set of all the sentences that it satisfies. Ordinal numbers are only
moderately discriminable, since any two of them satisfy the open sen-
tence in one order and not the other‘‘ [47,48]. An open sentence is
usually an equation or equality whose true value is meaningless



J. Urban et al. / Trends in Analytical Chemistry 53 (2014) 126–136 135
until its variables are replaced with specific numbers. The mass
values are ordinary numbers where the preceding relation is de-
fined (m/z 100 < m/z 101). The preceding relation by itself already
fulfills the existence of an open sentence. In other words, if it is
possible to define some metric in which the two objects are dis-
criminable (e.g., relation/operator of < or >, or just –), then the ob-
jects are discriminable. It is not important in what they are
discriminable, just that such metric could be defined.

In topology, distinguishability is usually considered to be the
same concept as resolution, but, mathematically, it is a slightly dif-
ferent term: a set of non-empty values is required to distinguish
between two values. In other words, two distinguished values
have to share the same neighborhood value(s). There has to be a
valley between the values. This definition of distinguishability rep-
resents a very important concept: it is describing the practically
achieved ability, meaning that we can distinguish two mass peak
(centroid) values only if there is a valley between them. Moreover,
the IUPAC recommendation also puts requirements on the value of
the valley. Thus, the IUPAC recommendation is a guideline on how
to move from the theoretical description to practical values. The
resolution is the theoretical characterization. According to Busch’s
suggestion [44], resolution Dm is the theoretical limit of the
distance between two points. Resolving power is the theoretical
ability to resolve R = m/Dm peaks of the 5% peak width equals
Dm in the range (0,m).

While distinguishability can be achieved in practice, resolu-
tion is a theoretical potency estimated via calibrations. The prac-
tical impact is immediate. The theoretical resolution equals the
distinguishability only in the ideal case. The distinguishability
for real measurements is usually worse than the theoretical
resolution.

In a normal situation, the superimposed signal (as in Fig. 6I)
does not show distinguishable peaks, even if the single peaks
could be measured. This does not mean that the resolution gets
worse, but the distinguishability of this particular case is worse
than the resolution. Moreover, the superimposed signal of Fig. 6K
cannot be clearly used for estimation of the resolution, but the
two peaks are distinguishable – there is a valley. The concepts of
discriminability and distinguishability create differences between
mass values of the same peak and mass values of the other mass
peaks.

Topological definitions discussed here are not in opposition to
the previous descriptions. In contrast, they complete the resolution
concept and repair some of the existing confusion. In real measure-
ments, many of these valleys could be considered invalid: they
could be caused by noise, or they could be not fulfilling some given
criterion. This theoretical criterion is the resolution (10% valley, 5%
peak width, or 2 FWHM). This leads us to the important difference
between the theoretical and practical ability to distinguish adja-
cent MS peaks, as follows.

� All theoretical values are discriminable. The subsets of values
(ideal peaks) fulfilling the criterion to be isolated (5% criterion)
or with a certain valley (10% criterion) define the value of the
resolution. The resolution is a special case of distinguishability.
The values with a distance between the points smaller than the
resolution are just discriminable. The values with a bigger dis-
tance are distinguishable by the resolution. The detector has
the resolving power to separate peaks (subset) of a given width
(= resolution).
� All measured values are discriminable. The theoretical resolu-

tion defines the minimal distance (discriminability value) when
the points may become distinguishable. The criterion defined
for resolution does not have to be fulfilled for the real peaks
to be able to distinguish them (Fig. 6K). It is enough that the dis-
tance between the apexes fulfills the value of theoretical resolu-
tion for isolated symmetrical peaks (theoretical) and that the
valley exists. The resolution is the minimal acceptable distin-
guishability, as shown in Equation (7):
Discriminate 6 Resolution 6 Distinguishable ð7Þ

Figs. 6j and l show cases where peaks are indistinguishable, but
where the distance between theoretical apexes equals the
theoretical resolution.
5. Conclusions

Generally, the challenge of determinations of mass centroids
consists of three related parts:

� defining the fundamental characteristics of MS;
� establishing criteria on how to link the theoretical and practical

abilities of an instrument to distinguish adjacent MS peaks; and,
� estimating the input parameters of the initial processing func-

tions to obtain centroid positions and peak areas.

Sufficient processing methods to decompose the mass spectrum
into individual mass peaks and to compute the centroid values are
available. However, the crucial issue is selecting input parameters
for the initial processing functions. The scaling parameter or win-
dow length chosen is much more important for the result of the
subsequent data analysis than the decision on the type of process-
ing function.

The fundamental characteristics of resolution and resolving
power are often described in different ways. The interpretation
and the relations between different concepts are not always imme-
diately clear. The IUPAC descriptions are only recommendations or
statements instead of definitions. The resolution could be esti-
mated on isolated peaks or valleys fulfilling the 10% criterion.
Otherwise, with two adjacent and overlapping peaks, it is recom-
mended to estimate the FWHM. The FWHM has to be at least half
of the theoretical resolution. In addition, some valley has to be
present between two peaks. The IUPAC 10%, 5%, and 50% fraction
definitions, respectively, constitute recommendations on how to
estimate the scale parameters. The relations between valley Dm,
5% Dm, and FWHM scale parameters are known.

The terms distinguishability and discriminability complete our
recommendations of fundamental definitions in MS. Topological
definitions offer a decision between the theoretical ability of a
measurement device and the practically achieved ability of the
measurement to distinguish adjacent MS peaks. If there is a valley
between the mass peaks, and the distance between mass-peak
apexes is bigger than the theoretical resolution, then the peaks
are distinguishable. In other words, the distinguishability cannot
be better than the resolution.

Resolution and resolving power are theoretical values for the
ideal case. In real measurements, we have to deal with distinguish-
ability. The minimal possible value of distinguishability is given by
the theoretical resolution. The value of distinguishability could be
estimated by using 2 FWHM.
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