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ABSTRACT

Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpre-
tation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure
identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in
metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to
the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottle-
neck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MS")
trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, gen-
erate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the
dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over
the past 10 years as a tool for metabolite identification, including algorithms, software and databases

used to build and to implement fragmentation trees and mass spectral annotations.
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1. Introduction

Mass spectrometry (MS) is the dominant analytical technique
in metabolomics. The elemental composition and structural infor-
mation of a molecule can be readily determined by information
provided by MS, such as accurate mass-to-charge ratio (1m/z), isotope
abundance [1] and fragmentation patterns [2]. The Metabolomics
Standards Initiative (MSI) categorizes structure elucidation into four
different levels: identification, annotation, characterization and
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classification [3,4]. These levels establish a thorough standard for
the validation of metabolites that are identified across non-
targeted metabolomic studies [4]. However, MSI does not provide
a scoring schema to rank identified compounds within the identi-
fied and annotated categories, a caveat that was recently highlighted
by metabolomics investigators [5]. Identification of metabolites refers
to complete identification of the structure, including molecular con-
nections and stereochemical assignments [6]. The identification
process of small molecules in metabolomics is similar to that in other
fields, such as toxicology and proteomics. All fields use accurate mass
analysis, databases or libraries, and mass spectral fragmentations,
such as LC-MS/MS. Some major differences between metabolomics
and proteomics are the presence of multiply-charged ions from
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peptides and the much larger chemical diversity in metabolomics
and exposome analyses [7-9]. Synthesizing reference standards for
confirmation of putative identifications is limited, time consum-
ing, and uneconomical. According to MSI, annotation is putative
compound identification in which the assignment of structures is
highly likely, but not validated through chemical-reference stan-
dards [4]. Structure annotations are often ambiguous due to the
large number of possible isomers, data inaccuracies, limited amounts
of corroborating information, and human errors, including
misclassification of sub-structures. However, annotation can also
be viewed as a strategy to reduce the need for isolation of com-
pounds and de-novo elucidation. The idea is to annotate mass spectra
using the most probable elemental compositions found in public
databases and to add additional orthogonal filters to decrease the
number of structure hits [10].

Computer-assisted structural elucidation (CASE) encompasses
structural dereplication using various analytical techniques from
tandem MS (MS?) and multi-stage MS (MS") to ultraviolet-visible
(UV), infrared (IR) and nuclear magnetic resonance (NMR) spec-
troscopies. CASE first reduces chemical and spectral properties of
an unknown compound, second generates candidate structures com-
patible with spectral features, and then ranks these candidates
[11-13]. CASE can be used when manual interpretation of data is
impractical and outcomes are unreliable using certain techniques,
such as artificial intelligence, pattern recognition, library search, and
spectral simulation [12,14]. Conversely, structural dereplication is
performed by comparing experimental data to well-known
databases that have standard reference data. Essentially, dereplication
is a process to identify “known unknowns”, which are compounds
that are unknown at the time of detection and with further
investigation are then found to be known compounds [15]. For
example, the National Institute of Standards and Technology (NIST)
database can be used to identify unknown compounds in gas
chromatography-MS (GC-MS) studies [16]. Both structural
dereplication and CASE are not considered de-novo identification
because they rely on database searches with pre-existing known
metabolites or reference standards [17]. Full de-novo identifica-
tion by MS alone can hardly be achieved because isomers are difficult
to distinguish by MS [10]. Mass spectral data inform about elemen-
tal compositions by combining accurate mass and isotopic
information [1]. Collision-induced fragmentation data on the MS?
or MS" levels are used to find structural information from unique
fragmentation patterns to test for the presence and the absence of
functional groups. Interpretation of data in CASE may subse-
quently yield a partial structure or a sub-structure [12] (e.g., by using
graphs that represent MS" fragmentation-tree spectra in a hierar-
chical and data-dependent format). In CASE, rules, such as the
calculation of “Rings plus double-bond equivalents” (RDBE), the ni-
trogen rule and the “even-electron rule”, are applied when
interpreting MS data to identify the formation of fragment ions and
neutral species [18].

The scope of this review is to discuss advancements in tech-
niques used by MS for structure elucidation, specifically the use of
MS" ion trees for small organic molecules with molecular weights
less than 2 kDa.

2. Limitations of tandem mass spectrometry

While collision-induced dissociation (CID) MS/MS today is the
dominant technique for library matching and interpreting frag-
ment patterns to find structural information [6], using MS/MS alone
falls short because product ions found in the MS/MS spectrum may
be derived from intermediary ions instead of being produced di-
rectly from the molecular adduct precursor ion. For example,
although epinine (deoxyepinephrine) conjugates in urine can be de-
termined by MS/MS via precursor ion and neutral loss scans [19],

MS/MS is unable to distinguish between positional isomers of
such catecholamines. In addition, many fragment ions in MS/MS
cannot be explained through fragmentation pathways even when
structures are known [19]. Isomeric flavonoid O-diglycosides may
yield different product-ion ratios in MS/MS fragmentation spectra
[20]. However, such fragment-ion ratios cannot be used to infer
interglycosidic linkages or glycan sequences in structural annota-
tions of unknowns (Fig. 1) even though the authors successfully
constructed a decision tree to differentiate these O-diglycosyl
flavonoids [20].

Similarly, the annotation of positional sub-structures of taxanes
in Taxus could not be achieved by MS/MS alone but only by using
additional analytical methods [21]. Taken together, MS/MS certain-
ly does not provide full structural information to elucidate an
unknown compound completely. MS/MS fails to yield specific po-
sitional information of sub-structures, and many fragment ions
remain unannotated with respect to presence of sub-structures or
detailing fragmentation pathways.

3. Fragmentation trees and mass spectral trees

Trees are data structures defined by graph theory to organize and
store data (e.g., the fragmentation process of an analyte of inter-
est, or MS" spectra generated by an ion-trap mass spectrometer).
A tree is generated by nodes that are linked by edges (Fig. 2). Typ-
ically, the graphs are called fragmentation trees [23], family trees
[24] or identification trees [25], if these trees show the fragmen-
tation pathway of a molecule (Fig. 2A). Fragmentation trees are
generated computationally to predict the fragmentation pathway
of a molecule [23]. An implication of the fragmentation relation-
ship between precursor ions and product ions is made before
acquiring MS" data. Conversely, ion trees or mass spectral trees refer
to the sequential stages and relationships of mass spectral acqui-
sition in MS" processes, representing precursor and product ions
as nodes and neutral losses as edges [26,27] (Fig. 2B). MS" trees can
therefore link ion-fragmentation pathways with (sub)structure re-
lationships in a hierarchical order. An important aspect of MS" trees
is that they reveal both the dependency of precursor/product ion
and product ion/product ion within the same MS" stage or between
different MS" stages. This idea is rooted in the concept that any two
MS" spectra can ideally be treated as virtual MS/MS data: an ion
has no memory. Hence, organizing large MS" libraries will yield a
tremendous expansion of publicly available MS/MS spectra, as long
as each mass spectrum (Fig. 2B) is associated with a defined struc-
ture (Fig. 2A). For both fragmentation and mass spectral trees,
computational methods are required to organize dependencies and
extract specific information.

3.1. MS"ion tree for fragmentation analysis in natural
products research

MS" multistage analysis provides means to link all product ions
to specific precursor ions, hence enabling recursive reconstruc-
tion of fragmentation pathways that link specific sub-structures to
complete molecular structures [28]. Oligosaccharides and sugar
nucleotides were annotated using MS* ion trees with Mass Fron-
tier 2.0 software [29], but the ion trap used lacked accurate mass
capabilities to associate fragmentation rules unambiguously with
potential fragmentation pathways to identify unknown metabo-
lites detected in plant-phloem samples. Fabre et al. [30] successfully
used MS" to characterize structurally fragment ions and fragmen-
tation mechanisms of flavonoid aglycones in negative-ion mode. MS?
data supported fragmentation mechanisms, helped distinguish
common neutral losses for specific sub-structures, and gave suffi-
cient information to propose reasonable structures for fragments
using both experimental and computational MS. However, for some
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Fig. 1. lon trap MS/MS spectra of (a) naringin (blue), (b) narirutin (red), acquired at 20% CID. While m/z values of MS/MS product ions are identical, normalized ion ratios
(mid panel) can distinguish these isomeric flavonoids. lon ratios cannot be used to determine glycan sequences on the aglycone backbone or specific interglycosidic linkages.
Mass spectra adapted from [20].
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Fig. 2. Left panel: A fragmentation tree and graph (A) represents structures or chemical formulas as nodes, here symbolized by rectangles with color coded ‘sub-
structures’. Grey edges represent a fragmentation graph and black edges show the fragmentation process and mechanism used to generate the fragmentation tree. {Figure
adapted from [22]}. Right panel: A mass spectral tree (B) shows nodes as individual mass spectra. Mass spectral trees are characterized by depth (MS" level) and breadth
(the number of ions from each mass spectra that are selected for subsequent MS"-level fragmentations).

flavonoid aglycones, MS? experiments did not provide sufficient data
to deduce fragmentation mechanisms conclusively [30].
Importantly, MS" can be used for dereplication of natural prod-
ucts, specifically to differentiate C-glycosidic flavonoid isomers [31].
MS? yielded insufficient data to distinguish 6-C and 8-C-glycosidic
flavonoids because no specific diagnostic ions were present to dif-
ferentiate such isomers, even though ion-intensity ratios were
different (Fig. 3). In order to establish rules about how ion ratios
could distinguish isomers, many more natural-product MS? spectra
would need to be acquired and computationally analyzed. However,
on the MS? stage, clear diagnostic ions were present to distinguish
vitexin and isovitexin (Fig. 3) because mechanisms of C-ring cleav-
ages were very different for these two isomers. Moreover, MS* yielded
data to prove the exact position of C-glycosylation on vitexin-2-
O”-rhamnoside [31]. These data formed a decision tree for
dereplication of flavonoids in the analysis of complex mixtures [31].
MS" data therefore provide more information to identify natural prod-
ucts unambiguously. Twenty-five citrus flavonoid O-diglycosides were
identified by comparing experimental MS?® spectra to MS? spectra
of reference compounds isolated from E aurantii [32], as MS/MS
spectra proved to be insufficient for high-confidence identifications.

4. MS" data-acquisition methods

Data-dependent ion-tree experiments (dd-ITe) are generally used
to collect MS" data on ion trap mass spectrometers such as the linear
quadrupole ion trap or Orbitrap instruments. Usually, spectra are
acquired under electrospray ionization (ESI) either using direct in-
fusion or flow injection [33]. Direct infusion-MS" data acquisition
provides the necessary time to populate the ion trap with ions of
sufficient signal intensity and to acquire exhaustive mass spectral
trees (Fig. 2). As an example, structure analysis of lipid A in Francisella
tularensis subspecies novicida [34] was acquired in this manner on
a hybrid linear ion-trap Fourier transform (FT) ion-cyclotron reso-
nance mass spectrometer. In comparison, flow injection, while being
compatible with liquid chromatography (LC) systems, often does not
yield sufficient time during the elution profile of the flow-injection
peak to yield strong enough signals for mass spectral tree acquisi-
tions [35]. An alternative might be posed by the Orbitrap Fusion mass
spectrometer that is equipped with a quadrupole, ion trap and
Orbitrap mass analyzer. Reportedly, this instrument may be com-
patible to fit the timescale of ultra-high pressure LC (UHPLC) peak

widths and generate MS" trees for profiling and structure elucida-
tion of metabolites using mzCloud, an MS" library for high- and low-
resolution data [36].

A comprehensive method was developed using both MS" spectra
and fragmentation trees for metabolite identification [37]. A very
extensive dd-ITe was programed to perform 107 mass spectra per
analyte with a maximum MS" depth of n=5 by data-dependent frag-
mentation using the five most abundant product ions at the MS?
and MS? levels, and the three most abundant product ions at the
MS* level [37]. Such dd-ITe was used to investigate structures of intact
polar lipids of microbes found in two regions in an artesian sulfur-
rich spring source [38]. DD-ITe was used for structural analyses of
seven vergauamide compounds in marine cyanobacteria, using a
maximum MS? depth [39]. Non-genotoxic carcinogens in rats and
lipid species were also structurally elucidated and confirmed using
dd-ITe [40]. However, there are alternatives to ion-trap-based MS"
studies. Using quadrupole time-of-flight (TOF)-MS, pseudo-MS?
spectra can be acquired using high energy to produce in-source frag-
mentation and subsequent collision-induced fragmentation with
accurate mass product-ion analysis. As the precursor ion and initial
neutral-loss product ion are fragmented simultaneously, compos-
ite MS® spectrum are generated [41]. MS" data were also acquired
using a triple-quadrupole mass spectrometer to identify and to char-
acterize glycerophosphatidylethanolamine lipids structurally [42],
specifically to characterize substituents on the fatty acyl chains.

A second alternative method combines LC with MS" and sub-
sequent solid-phase extraction (SPE) with NMR spectroscopy [43].
This method was used for structural elucidation of tomato flavo-
noids present at sub-ig amounts in crude extracts (e.g., quercetin-
3-0-glucoside) [44]. A combination of LC-FT ion cyclotron MS" and
LC-TOF-MS-SPE-NMR proved to be successful in two studies: 138
urinary metabolites were annotated and 36 phenolic conjugates were
structurally elucidated in a study on consumption of black or green
teas [45]. In a related study, 177 phenolic compounds in tea prod-
ucts were annotated to be derivatives of flavan-3-ols and flavonols
using spectral trees to profile conjugates and derivatives [46].

LC with high-resolution MS? has been combined with a mass spec-
tral tree similarity-filter technique (MTSF) to identify 68 compounds
in traditional Chinese medicine [47]. Some 14 reference com-
pounds were used to generate mass spectral trees and build a user
library in Mass Frontier version 7.0 software. MTSF workflow in-
cludes collecting MS" data on all detected compounds and using Mass
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Fig. 3. MS? and MS? ion-trap spectra for the 8-C-glycosidic flavonoid vitexin (top left and top right) and the 6-C-glycosidic flavonoid isovitexin (bottom left and bottom

right). The product ion in MS? m/z 313 produced many different fragment ions that can be used as diagnostic ions to differentiate the two C-glycoside isomers. Using the

fragment ions, a decision tree (right) was made to differentiate 6-C and 8-Cglycosidic flavonoid isomers. {Reproduced with permission from [31]}.
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Frontier 7.0 to calculate the similarity between the MS" tree of the
reference compound and the detected compound and to assign a
similarity score. After the candidate compound was determined, ac-
curate m/z value and fragmentation rules were used to determine
the identity further [47]. Similarly, Jia et al. [48] characterized and
identified 38 compounds in Saussurea involucrate using the same
method of combining LC-high-resolution MS" with MSTF. In human-
urine samples, 10 compounds were annotated from 30 target
unknown molecules using MS" trees and similarity matching to find
and to verify sub-structures and validate that unknown metabo-
lites belong to a specific compound class [49]. Similarly, 127 phenolics
and glucosinolates were identified by MS" with MTSF matching from
crude extracts of tomatoes and Arabidopsis leaves [50]. Wang et al.
[51] also used the MSTF method to report detection and confirma-
tion of illegal adulterants in health foods and herbal medicines.

5. Computational tools for MS" and fragmentation trees

When accounting for the huge chemical complexity of natural
products in plants and microbes and biotransformations in micro-
bial communities, such as the human gut, there are millions of small
molecules in nature. It is impossible to acquire reference mass spectra
for all these compounds in libraries [16,52]. Instead, in-silico pre-
diction tools can be used to generate much larger virtual MS/MS
and MS" spectral libraries [52,53]. Such prediction tools could be
developed and validated by mass spectral libraries of authentic com-
pounds. Especially the large LipidBlast library of over 200,000 MS/MS
spectra of complex lipids is a good example how rule-based gen-
eration of virtual spectra may upend the dominance of small
reference spectral libraries used in metabolomics [54]. Computa-
tional MS is a necessity for big data initiatives involving MS/MS and
MS" analyses and fragmentation trees [37,52,55,56]. Use of such tools
is evaluated in a new initiative, the Critical Assessment of Small Mol-
ecule Identification contest (CASMI) [57,58].

Fragmentation and ion trees aim to identify the molecular for-
mulas of compounds, elemental compositions of fragment ions and
neutral losses, to perform automatic annotations on MS/MS or MS"
spectra, to aid in structure and sub-structure elucidation by in-
silico fragmentation, to predict molecular fingerprints and to provide
a de-novo identification strategy. Fragmentation trees have been pri-
marily calculated from MS/MS data, GC electron-ionization-MS data,
and MS" data [2,23,59-62]. Fragmentation trees were developed for
MS/MS spectra annotation by representing each peak by a node with
amolecular formula [23]. Similarly, fragmentation trees were com-
puted to show the dependencies between fragment ions found in
CID spectra [63]. More recently, the SIRIUS? software (Sum Formula
Identification by Ranking Isotope Patterns Using Mass Spectrom-
etry) was released to determine the molecular formula aided by
fragmentation trees [64-66] but limited to MS? data. Calculation of
fragmentation trees is more difficult from MS" data because the
number of relationships between ions explodes with MS" data [61,62].
Molecular formulas are computationally generated and assigned to
each fragments on a fragmentation tree. This calculation requires
an input of MS" data. Fig. 4 shows the multiple relationships and
fragment dependencies found between MS? and MS? spectra.

A published approach to calculate fragmentation trees used a tree-
completion heuristic method [67] and a strategy was developed that
computed fragmentation trees and used kernel-based machine-
learning techniques to improve identification of metabolites [68].
Alignments of fragmentation trees are required to find similar frag-
mentation pathways across different compounds. Compounds that
share similar fragmentation patterns correlate with strong chem-
ical similarity. Tentative structural information can be gained by the
alignment of unknown compounds to known compounds [69]. The
fragmentation tree basic logic alignment search tool (FT-BLAST) com-
pares fragmentation patterns and groups compounds based on those
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Fig. 4. Workflow for generating fragmentation trees from MS" data. MS" ions are
assigned by molecular formulas, organized into a fragmentation graph and ulti-
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{Reproduced with permission from [62]}.
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similarities (Fig. 5). Eight compounds from 89 m/z features were an-
notated from MS" data of extracts of Icelandic poppies (P. nudicaule)
[70]. As tree alignments present multiple solutions, comparison
results need to be scored. New methods may prove useful for both
metabolite identification and searching databases [71].

Structure and sub-structure annotations based on in-silico frag-
mentations are based on known chemical rules or use combinatorial
approaches. The state-of-the-art commercial software Mass Frontier
generates fragments based on rule-based predictions, produces mass
spectral trees, calculates fragmentation pathways, searches for sub-
structures by FISh (Fragment lon Search), calculates molecular
formulas, and develops fragmentation rules. For fragment-structure
predictions, Mass Frontier employs common fragmentation and re-
arrangement rules and literature-based assignments. Mass spectral
trees are linked to predicted fragments and mechanisms. Fragmen-
tation rules obtained from such MS" trees are best applied to sets
of specific compound classes. A novel mass spectral database, such
as mzCloud, supports the precursor-ion-fingerprinting (PIF) algorithm
to interpret mass spectra by performing library searches for the pre-
cursor ion, generating spectral trees, and generating MS" tree libraries
[26]. As an alternative to Mass Frontier, academic software was re-
leased to analyze MS" spectra and generate spectral trees [37]. This

software was specifically designed to remove or filter artefacts present
from the LTQ-Orbitrap XL. Such artefacts have been previously de-
scribed as a result of electronic interference found in Fourier-
transformation instruments, such as ion-cyclotron resonance and
Orbitrap mass spectrometers [72]. Recently, an iontree R-package
was developed for handling MS/MS and MS? spectra, comparing MS"
spectra and building ion-tree libraries [73]. The iontree package is
platform independent, which improves the capability of managing
MS" data from different instruments and laboratories [73].

MS" data are also analyzed by the Multistage Elemental Formula
(MEF) software, which determines elemental compositions for pre-
cursor ion, fragment ion and neutral losses [49]. This software
annotated several candidate structures from human urine by match-
ing spectral sub-trees of known reference compounds to sub-
trees of unknown metabolites. Such sub-trees are portions of the
overall MS" tree that have sub-structures in common.

Recently, MAGMa (MS Automation based on in silico Gener-
ated Metabolites) was introduced as a tool for LC-MS" spectra
annotation [43,74] and to provide structure elucidation and was re-
ported to be the best automated tool in CASMI 2013 [58].
Sub-structures and spectral tree annotation using MAGMa are found
by using systematic bond dissociation to fragment a candidate
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structure. In itself, systematic bond dissociation has been a
popular method for enumerating all possible fragment-candidate
structures.

MetFrag was developed to generate all in-silico fragments using
a bond-disconnection method [55] and was reviewed [27,75,76].
MetFrag generates fragmentation trees to reduce the number of cal-
culated fragments. The problem with bond-disconnection-method
approaches is that all bonds are fragmented, without initially ac-
counting for bond strengths or bond-dissociation energies. They are
taken into account when the scores of all in-silico candidate frag-
ments are computed. MetFrag is limited to accurate mass data and
performs best when generating a fragmentation tree with a
maximum depth of 2 [55]. Subsequently, MetFusion was devel-
oped to improve compound identification by combining both
MetFrag and mass spectral searching in MassBank [77].

The alternative fragmenter software ISIS (In Silico Identifica-
tion Software) was developed for fragmentation-pattern analysis
using artificial neural network machine learning and kinetic Monte
Carlo algorithms to learn bond cleavages from ion-trap spectra in
order to predict in-silico MS/MS spectra [78]. Systematic bond dis-
sociation is also implemented in MIDAS (Metabolite Identification
via Database Searching) software [79].

Originally, EPIC (Elucidation of Product Ion Connectivity) was
created as a program to assign automatically sub-structures gen-
erated by systematic bond dissociation to only MS/MS data [80]. A
further algorithm finds parent/fragment ion pairs and also helps to
distinguish peaks from unrelated compounds or contaminants [81].

Recently, CASS (Chemically Aware Sub-structure Search) was de-
veloped to provide a tool that automatically detects functional groups
in compound libraries [82]. CASS is also designed to create a func-
tional group-resolved metabolite database. CASS is not hard-
coded and is flexible to customize with additional functional groups.

Sub-structure generation via exhaustive combinatorial tools, such
as MOLGEN (MOLecular structure GENeration) [83], quickly leads
to computational performance problems and may not explain all
peaks found in experimental or in-silico fragmentation spectra due
to the vast number of similar candidate structures and the lack of
rich sub-structure information from spectra [84]. Sub-structures and
characteristic product ions are searchable using MS2Analyzer [85].

Overall, fragmentation trees and MS" trees combined may be best
suited to search for sub-structures to provide annotations of
unknown metabolites. Common sub-structures can provide evi-
dence for annotation of compound classes and presence of specific
functional groups.

Web-based analysis of MS" data has been made available by the
MetiTree (Metabolite Identification Tree) application. Spectral data,
fragmentation trees, and fragmentation reactions can be simulta-
neously explored and deciphered for both structure and sub-
structure identification [86,87]. MetiTree was used to investigate
secondary metabolites in filamentous fungus Penicillium chrysogenum
[88].

A different solution to find characteristic sub-structures was pre-
sented by the MoleculePuzzle software [89] to predict in-silico
fragmentations, sub-structures and structural isomers via rule-
based logic. Linking MS™ and sub-structure trees [90] may indeed
provide a systematic and efficient method for structure elucida-
tion, since the sub-structure tree is linked to the hierarchical order
of MS" data.

Additionally, LC retention-time information may be added to
workflows. The main idea is that successfully identified metabo-
lites in LC-MS data sets may be used as bait to fish for derivatives
of these compounds. By searching for characteristic m/z differ-
ences (e.g., for hydroxylations) and predicting that hydroxylated
derivatives of identified metabolites will elute earlier in reversed-
phase LC, the CSPP algorithm suggests pairs of substrate/product
candidate pairs that may be annotated by MS" spectra [91].

Table 1
Summary of software and computational tools for mass spectral and fragmenta-
tion trees.

Software Main function Ref.
FiD Substructure Prediction [92]
PIF Generates spectral trees [26]
Mass Frontier Generates spectral trees [93]
MetFrag Fragmenter [55]
MEF Calculates molecular formulas [86]
MoleculePuzzle Predicts fragmentation of a compound [89]
MetiTree Generates spectral trees [87]
ISIS Fragmenter [78]
MetFusion Combines MetFrag with spectral library search [52]
R-package “iontree” Generates spectral trees [73]
MAGMa Fragmenter and annotates spectra [74]
CSPP Spectra annotation tool [91]
SIRIUS? Calculates molecular formulas and [64]

fragmentation trees

Overall, recent years saw very active developments of a range
of algorithms, approaches and software tools to use directly the tree-
based approaches that are summarized in Table 1. CASMI may be
a suitable test bed for comparing this array of novel opportunities
in identification of unknowns.

Apart from the direct application of trees in computational MS,
data and information may be generated that can be used indi-
rectly to identify unknown metabolites. The MZmine 2 framework
[94] combines heuristic rules, fragmentation-pattern analysis, and
isotopic pattern matching to predict molecular formula from HRMS
data. FingerID uses MS/MS data to predict molecular fingerprints
or properties of a metabolite that are subsequently matched against
PubChem to provide a metabolite identity [92,95]. Most recently,
CFM (Competitive Fragmentation Modelling) and CFM-ID (Com-
petitive Fragmentation Modelling Identification) were specifically
developed to predict MS/MS spectra based on machine learning and
probabilistic generative models [22,96]. Results of such predic-
tions appear to outperform MetFrag and FingerID.

6. Tandem and MS" spectral libraries and databases

Accuracy of spectral predictions by any of the aforementioned
algorithms or software programs can best be validated by authen-
tic, curated mass spectral repositories, such as the NIST14 library
that currently holds MS/MS spectra for 8171 distinct compounds
acquired on ion traps and 7692 distinct compounds acquired on
QTOF or triple-quadrupole mass spectrometers. Such libraries and
databases require high-resolution and high mass accuracy data for
annotation of metabolites. Software that performs structural an-
notation relies on structural databases that may be larger than
spectral libraries but nonetheless still incomplete. However, most
mass spectral libraries and databases do not store MS" data, except
for HighChem’s commercial Spectral Tree library with currently 2740
spectral trees, mzCloud [36] (a freely available Web interface) with
currently 2625 spectral trees, and the open access MassBank da-
tabase [77] that contains 2.2% MS?® or MS* spectra. Both High Chem’s
Spectral Tree library and mzCloud support precursor-ion finger-
printing [26] and are fully integrated with Mass Frontier 7.0.

HAMMER (High-throughput AutoMation of Mass frontiER) is
freely available software that was developed to compensate for the
lack of chemical space that current MS" spectral libraries cover [56].
HAMMER allows users to control Mass Frontier 7.0 to build in-
silico MS" mass spectral libraries.

The ground-breaking FragLib [97] library was developed in 2005
for the characterization of glycans and oligosaccharides as the first
repository that was structured to encompass MS" data and to build
MS" fragmentation trees from MS" data. This glycan MS" spectral
library was built to differentiate isobars, characterize sub-structures
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due to extensive fragmentation, and allow for complete structure
elucidation from these sub-structures, leading to discovery of novel
compounds. Another glycan and glycolipid library is GMDB, which
holds mas spectra up to the MS* level [98].

7. Conclusions

While over 95% of all acquired LC/MS fragmentation studies cur-
rently remain at the MS/MS level, the lack of standardized mass
spectral libraries and the huge number of unidentified metabo-
lites limit overall progress in metabolomics. The bottleneck of
compound identification in metabolomics cannot be overcome
without better mass spectral prediction tools. Fragmentation trees
and MS" mass spectral trees may here give the answer. In recent
years, a large increase in efforts was noted for acquisition of MS"
data and developments of tools for structure elucidation and spectra
annotations. Advancements have come to a point where bottle-
necks may be limited by the number of publicly-available data with
respect to authentic and curated MS" spectra of natural products
as well as high-quality MS" data sets from metabolomics studies.
The increasing interest in metabolomics by researchers and funding
agencies raises hope that larger data sets may soon be available to
test, to validate and to compare the multitude of algorithms and
software tools that promise to yield accurate compound-annotation
results. Computational contests, such as CASMI, will aid in devel-
oping standards similar to developments in proteomics and
prediction of protein-crystal structures in the past.
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