Modeling in Dynamic Analysis

Escolha dos modelos matemáticos em Mecânica das Estruturas

Modelos estruturais

M1 - Treliça

M2 - Estado plano de tensões

M3 - Estado plano de deformações

M4 - Axissimétrico

M5 - Viga de Timoshenko

M6 - Viga de Bernoulli-Euler

M7 - Reissner-Mindlin

M8 - Elasticidade tridimensional

Carregamentos

Condições de contorno

Tipo da análise

A1 – Estática

A2 - Dinâmica

Cinemática

K1 - pequenos deslocamentos e deformações

K2 - grandes deslocamentos e pequenas deformações

K3 - grandes deslocamentos e deformações

Comportamento constitutivo

C1 - Elástico, linear e isotrópico

C2 - Elástico, linear e ortotrópico

Modeling in Dynamic Analysis

Loads varing with time

- "slowly" quasi-static analysis (resulting acceleration are "small")
- "rapidly" dynamic analysis
 (acceleration should be accounted for and significantly influence the response)

 $f^{B} - {}^{t}\rho \underline{\ddot{u}}(t)$ d'Alembert's principle

$$\underline{R}_{B} = \sum_{m} \int_{V^{m}} \underline{H}^{(m)^{T}} \left[\underline{f}^{B(m)} - \rho^{(m)} \underline{H}^{(m)} \underline{\ddot{U}} \right] dV^{(m)}$$
$$\underline{M} = \sum_{m} \int_{V^{m}} \rho^{(m)} \underline{H}^{(m)^{T}} \underline{H}^{(m)} dV^{(m)}$$
$$\underline{M} \, \underline{\ddot{U}} + \underline{K} \, \underline{U} = \underline{R}$$

Linear Analysis

 $\underline{\underline{M}}\,\underline{\underline{U}}(t) + \underline{\underline{K}}\,\underline{\underline{U}}(t) = \underline{\underline{R}}(t)$

If damping is taken into account

$$\underline{f}^{B} - \rho \underline{\ddot{u}} \xleftarrow{k\underline{\dot{u}}} \xrightarrow{} \text{Velocity dependent damping forces}$$
$$\underline{M} \, \underline{\ddot{U}}(t) + \underline{C} \, \underline{\dot{U}}(t) + \underline{K} \, \underline{U}(t) = \underline{R}(t)$$

And initial conditions

 $\underline{\underline{U}}(0) = \underline{\underline{U}}_{0}$ $\underline{\underline{U}}(0) = \underline{\underline{U}}_{0}$

- Direct Integration Methods
- Mode Superposition

Apoio a PEF-2401 – slides selecionados de apresentação preparada pelo Prof. João Cyro

Sistemas com vários graus de liberdade

 $\mathbf{M}\ddot{\mathbf{U}} + \mathbf{K}\mathbf{U} = \mathbf{0} \qquad \mathbf{com} : \begin{cases} \mathbf{U}(0) = \mathbf{U}_0 \\ \dot{\mathbf{U}}(0) = \dot{\mathbf{U}}_0 \end{cases}$

Solução :
$$\mathbf{U} = \mathbf{\hat{U}} \cos(\omega t - \theta)$$

Substituindo a solução na equação do movimento:

$$(\mathbf{K} - \omega^2 \mathbf{M})\mathbf{\hat{U}} = \mathbf{0}$$

Sistemas com vários graus de liberdade - sistema não-amortecido

$$(\mathbf{K} - \omega^2 \mathbf{M})\mathbf{\hat{U}} = \mathbf{0}$$

Problema de autovalores associado :

$$|\mathbf{K} - \omega^2 \mathbf{M}| = 0 \qquad \text{ou}$$

$$|\mathbf{A} - \omega^2 \mathbf{I}| = 0 \quad \mathbf{com} \quad \mathbf{A} = \mathbf{M}^{-1} \mathbf{K}$$

VGL: Exemplo 8

 $EI = 80000 \text{ Nm}^2$ L = 2 m $m = 50 \text{ kgm}^{-1}$

VGL - E 8 : Matriz de rigidez

$$\mathbf{K} = \frac{EI}{L^3} \begin{bmatrix} 24 & 6L & 6L \\ 6L & 8L^2 & 2L^2 \\ 6L & 2L^2 & 8L^2 \end{bmatrix}$$

VGL - E 8 : Matriz de massa

$$\mathbf{M} = \frac{mL}{420} \begin{bmatrix} 732 & 22L & 22L \\ 22L & 8L^2 & -3L^2 \\ 22L & -3L^2 & 8L^2 \end{bmatrix}$$

VGL - E 8 : Modo 1

$$\omega_1 = 32.1 \, \mathrm{rd/s} \implies \hat{\mathbf{U}}_1 = \begin{cases} -3.633\\ 1.000\\ 1.000 \end{cases}$$

VGL - E 8 : Modo 2

$$\omega_2 = 151.4 \text{ rd/s} \implies \hat{\mathbf{U}}_2 = \begin{cases} 0.000\\ 1.000\\ -1.000 \end{cases}$$

VGL - E 8: Modo 3

$$\omega_3 = 326.8 \text{ rd/s} \Rightarrow \hat{\mathbf{U}}_3 = \begin{cases} -0.109\\ 1.000\\ 1.000 \end{cases}$$

Avaliação no ADINA de frequências e modos de vibração

VGL - E 8 :
 Matriz modal

$$\Phi = \begin{cases} -3.633 & 0 & -0.109 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{cases}$$

 Propriedades :
 1 & -1 & 1 \\ 1 & -1 & 1 \end{cases}

$$\mathbf{M}^{\star} = \mathbf{\Phi}^{T} \mathbf{M} \mathbf{\Phi} = \begin{bmatrix} 2145 & 0 & 0 \\ 0 & 21 & 0 \\ 0 & 0 & 7 \end{bmatrix} \implies M_{ij}^{\star} = \phi_{i}^{T} \mathbf{M} \phi_{j} = 0$$
$$\mathbf{K}^{\star} = \mathbf{\Phi}^{T} \mathbf{K} \mathbf{\Phi} = \begin{bmatrix} 2210650 & 0 & 0 \\ 0 & 480535 & 0 \\ 0 & 0 & 751012 \end{bmatrix} \implies K_{ij}^{\star} = \phi_{i}^{T} \mathbf{K} \phi_{j} = 0$$

MSM: Exemplo 9

Direct Integration Methods

- no transformation of coordinates
- equation is satisfied at discrete times positions
- solution is obtained at these time positions

How we obtain the solution of the "next" time position is dependent of the particular intergration scheme used

Central Difference Method

$$t - \Delta t$$
 t $t + \Delta t$

$$\frac{\ddot{U}}{\Delta t^{2}} = \frac{1}{\Delta t^{2}} \begin{pmatrix} t - \Delta t \\ \underline{U} - 2 & \underline{U} + t + \Delta t \\ \underline{U} \end{pmatrix}$$
(a)
$$^{t} \underline{\dot{U}} = \frac{1}{2\Delta t} \begin{pmatrix} t + \Delta t \\ \underline{U} - t - \Delta t \\ \underline{U} \end{pmatrix}$$
(b)

Substituting (a) and (b) in the "equilibrium" equation at time t

 $\underline{M}^{t} \underline{\overset{}U} + \underline{C}^{t} \underline{\overset{}U} + \underline{K}^{t} \underline{U} = \underline{K}$

Then

$$\left(\frac{1}{\Delta t^{2}}\underline{M} + \frac{1}{2\Delta t}\underline{C}\right)^{t+\Delta t}\underline{U} = {}^{t}\underline{R} - \left(\underline{K} - \frac{2}{\Delta t^{2}}\underline{M}\right)^{t}\underline{U} - \left(\frac{1}{\Delta t^{2}}\underline{M} - \frac{1}{2\Delta t}\underline{C}\right)^{t-\Delta t}\underline{U}$$

It is an Explicit Method

- Equilibrium is imposed at time t
- No factorization of the stiffness matrix is required

Since explicit methods requires small time steps they are efficient when one can consider:

lumped mass matricesneglet damping

Then

$$\left(\frac{1}{\Delta t^2}\underline{M}\right)^{t+\Delta t}\underline{U} = \hat{\underline{R}}$$

 $^{t+\Delta t}U_i = {}^{t}\hat{R}_i \left(\frac{\Delta t^2}{m}\right)$

 ${}^{t}\underline{\hat{R}} = {}^{t}\underline{R} - \left(\underline{K} - \frac{2}{\Delta t^{2}}\underline{M}\right) {}^{t}\underline{U} - \left(\frac{1}{\Delta t^{2}}\underline{M}\right) {}^{t-\Delta t}\underline{U}$

Resulting

Since triangularization of <u>K</u> is not required, it is not necessary to assemble the stiffness matrix $\mathbf{K}^{t}\mathbf{U} = \sum_{i} \mathbf{K}^{(i)t}\mathbf{U} = \sum_{i} \mathbf{k}^{(i)t}\mathbf{E}^{(i)}$

$$\underline{K}^{\mathsf{t}}\underline{U} = \sum_{i} \underline{K}^{(i)\,\mathsf{t}}\underline{U} = \sum_{i} \underline{K}^{(i)\,\mathsf{t}}$$

Implicit Method

F

• Newmark - Widely use scheme

$${}^{t+\Lambda t} \underline{\dot{U}} = {}^{t} \underline{\dot{U}} + [(1-\delta)^{t} \underline{\ddot{U}} + \delta^{t+\Lambda t} \underline{\ddot{U}}] \Delta t$$

$${}^{t+\Lambda t} \underline{U} = {}^{t} \underline{U} + {}^{t} \underline{\dot{U}} \Delta t + \left[\left(\frac{1}{2} - \alpha \right)^{t} \underline{\ddot{U}} + \alpha^{t+\Lambda t} \underline{\ddot{U}} \right] \Delta t$$
For example consider $\delta = \frac{1}{2}, \alpha = \frac{1}{4}$ then
$${}^{t+\Lambda t} \underline{\dot{U}} = {}^{t} \underline{\dot{U}} + \left[\underbrace{(1-\delta)^{t} \underline{\ddot{U}}}_{V} + \delta^{t+\Lambda t} \underline{\ddot{U}}}_{\alpha \Delta t} \right] \Delta t$$
Constant-average accelerations
$${}^{t+\Lambda t} \underline{U} = {}^{t} \underline{U} + {}^{t} \underline{\dot{U}} \Delta t + \left[\underbrace{(\frac{1}{2} - \alpha)^{t} \underline{\ddot{U}}}_{\alpha \Delta t} + \alpha^{t+\Lambda t} \underline{\ddot{U}}}_{1/2 \alpha (\Delta t)^{2}} \right] \Delta t^{2}$$

Integração direta no ADINA

Sistemas com vários graus de liberdade - sistema amortecido $\mathbf{M}\ddot{\mathbf{U}} + \mathbf{C}\dot{\mathbf{U}} + \mathbf{K}\mathbf{U} = \mathbf{0} \qquad \mathbf{com} : \begin{cases} \mathbf{U}(0) = \mathbf{U}_0 \\ \dot{\mathbf{U}}(0) = \dot{\mathbf{U}}_0 \end{cases}$ C qualquer \Rightarrow { problema de autovalores no campo complexo $\mathbf{C}_{tipo Rayleigh} = a_0 \mathbf{M} + a_1 \mathbf{K} \implies \begin{cases} \text{problema de autovalores} \\ \text{do sistema amortecido} \end{cases}$

Método da Superposição Modal $\mathbf{M}\ddot{\mathbf{U}} + \mathbf{C}\dot{\mathbf{U}} + \mathbf{K}\mathbf{U} = \mathbf{R}(t)$ $\mathbf{com}: \begin{cases} \mathbf{U}(0) = \mathbf{U}_0 \\ \dot{\mathbf{U}}(0) = \dot{\mathbf{U}}_0 \end{cases}$

Mudança de variáveis: $\mathbf{U}(t) = \mathbf{\Phi}\mathbf{Y} = \sum_{i=1}^{n} \phi_i \mathbf{Y}_i(t)$

 $\mathbf{M}\boldsymbol{\Phi}\ddot{\mathbf{Y}} + \mathbf{C}\boldsymbol{\Phi}\dot{\mathbf{Y}} + \mathbf{K}\boldsymbol{\Phi}\mathbf{Y} = \mathbf{R}(t)$ $\mathbf{\Phi}^{T}\mathbf{M}\boldsymbol{\Phi}\ddot{\mathbf{Y}} + \mathbf{\Phi}^{T}\mathbf{C}\boldsymbol{\Phi}\dot{\mathbf{Y}} + \mathbf{\Phi}^{T}\mathbf{K}\boldsymbol{\Phi}\mathbf{Y} = \mathbf{\Phi}^{T}\mathbf{R}(t)$ $\mathbf{M}^{*}\ddot{\mathbf{Y}} + \mathbf{C}^{*}\dot{\mathbf{Y}} + \mathbf{K}^{*}\mathbf{Y} = \mathbf{R}^{*}(t)$

Método da Superposição Modal

Amortecimento do tipo Rayleigh:

$$\mathbf{C} = a_0 \mathbf{M} + a_1 \mathbf{K}$$

$$\mathbf{C}^* = \mathbf{\Phi}^T \mathbf{C} \mathbf{\Phi} = \mathbf{\Phi}^T (a_0 \mathbf{M} + a_1 \mathbf{K}) \mathbf{\Phi} = a_0 \mathbf{M}^* + a_1 \mathbf{K}^*$$

$$\mathbf{C}_i^* = a_0 \mathbf{M}_i^* + a_1 \mathbf{K}_i^*$$

$$\xi_i = \frac{\mathbf{C}_i^*}{2\mathbf{M}_i^* \omega_i}$$

Método da Superposição Modal para amortecimento do tipo Rayleigh

Problema de n graus de liberdade

n problemas com 1 grau de liberdade

$$\mathbf{M}_{i}^{*} \ddot{\mathbf{Y}}_{i} + 2\xi_{i} \mathbf{M}_{i}^{*} \boldsymbol{\omega}_{i} \dot{\mathbf{Y}}_{i} + \mathbf{K}_{i}^{*} \mathbf{Y}_{i} = \mathbf{R}_{i}^{*} (t)$$

$$\mathbf{com} : \mathbf{Y}_{i0} = \frac{\boldsymbol{\phi}_{i}^{T} \mathbf{M} \mathbf{U}_{0}}{\mathbf{M}_{i}^{*}} \quad \mathbf{e} \quad \dot{\mathbf{Y}}_{i0} = \frac{\boldsymbol{\phi}_{i}^{T} \mathbf{M} \dot{\mathbf{U}}_{0}}{\mathbf{M}_{i}^{*}}$$

visto que: $\phi_i^T \mathbf{M} \mathbf{U}_0 = \phi_i^T \mathbf{M} \Phi \mathbf{Y}_0 = \phi_i^T \mathbf{M} \phi_i \mathbf{Y}_{i0}$

MSM: Exemplo 9

 $EI = 80000 \text{ Nm}^2$ L = 2 m $m = 50 \text{ kgm}^{-1}$ $R_1(t) = 100 \text{ sen}(\overline{\omega}t) \text{ com } \overline{\omega} = \omega_1$

MSM: Exemplo 9

27

MSM: Exemplo 9 parcela permanente da resposta

 $Y_1(t) = -0.01638302582894d0 \sin(32.1 t - 1.56812127993292d0)$

 $Y_2(t) = 4.02662053664706d-10 \sin(32.1 t - 0.10429109406732d0)$

 $Y_3(t) = -1.45584235043844d-4 \sin(32.1 t - 0.10081750827976d0)$

$$\mathbf{U} = \begin{cases} U_1(t) \\ U_2(t) \\ U_3(t) \end{cases} = \mathbf{\Phi} \begin{cases} Y_1(t) \\ Y_2(t) \\ Y_3(t) \end{cases}$$

Stability and Accuracy

 $\underline{M} \, \underline{U}(t) + \underline{C} \, \underline{U}(t) + \underline{K} \, \underline{U}(t) = \underline{R}(t)$ $\underline{K} \, \underline{\phi} = w^2 \underline{M} \, \underline{\phi} \quad \begin{cases} w_i \text{ frequencie s} \\ \underline{\phi}_1, \underline{\phi}_2, \dots, \underline{\phi}_n \\ \underline{U}(t) = \sum_{i=1}^n x_i(t) \underline{\phi}_i \end{cases} \text{ node shapes}$

and defining $r_i = \phi_i^T \underline{R}$

$$m_{i} = \underline{\phi}_{i}^{T} \underline{M} \underline{\phi}_{i}$$

$$c_{i} = \underline{\phi}_{i}^{T} \underline{C} \underline{\phi}_{i}$$

$$k_{i} = \underline{\phi}_{i}^{T} \underline{K} \underline{\phi}_{i}$$

$$w_{i} = \sqrt{\frac{k_{i}}{m_{i}}} ; \quad \xi_{i} = \frac{c_{i}}{2m_{i}w_{i}}$$

If all equation (i=1,2, ..., n) are integrated numerically with the same Δt then the solution of the mode superposition approach is exactly the same as integrating directly

$\underline{M}\,\underline{\ddot{U}}(t) + \underline{C}\,\underline{\dot{U}}(t) + \underline{K}\,\underline{U}(t) = \underline{R}(t)$

with the same numerical scheme and with this time step Δt .

Therefore the considerations of accurancy and stability can be made in the uncoupled system.

Accuracy

- How many modes we want to represent accurately? •
 - Depends on the frequency content of the load

Finite element discretization

n degrees of fredom

p is the number of modes to be represented accurately

In general: p << n

The period of the pth mode $T_p = \frac{2\pi}{m}$

Accuracy
$$\Delta t = \frac{T_p}{20} = \frac{\pi}{10w_p}$$

However for mode **n**

$$\frac{\Delta t}{T_n} = \frac{\Delta t}{T_n} \frac{T_p}{T_p} = \frac{\Delta t}{\underbrace{T_p}} \frac{T_p}{\underbrace{T_n}} \underbrace{= 50}_{\text{can be}}$$

$$\approx \frac{1}{20} \quad \text{can be} \approx 1000$$

 W_p

No accurancy for modes \rightarrow **n**. But the response on these higher modes need to be bounded \Rightarrow Stability.

Analytically

In the computer k_i $m_i \rightarrow r_i(t)$ c_i

 $u(0) \neq 0$ (finite digit computations) $\dot{u}(0) \neq 0$

<u>Unconditionally stable</u> - the solution remains bounded for any Δt (r_i=0)

<u>Conditionally stable</u> - the solution remains bounded as long as $\Delta t \leq \Delta t_{cr} (r_i=0)$

 Δt_{cr} - critical time step

Central Difference Method

$$\Delta t_{cr} = \frac{T_n}{\pi}$$

Newmark Method

Unconditionally stable as long as $\delta \ge 0.5$ $\alpha \ge 0.25(\delta + 0.5)^2$

Note that for CDM

$$\frac{\Delta t_{cr}}{T_n} \le \frac{1}{\pi}$$

$$\frac{\Delta t_{cr}}{T_n} \frac{T_p}{T_p} = \frac{\Delta t_{cr}}{T_p} \frac{T_n}{\underbrace{T_p}_{\approx 1000}} \leq \frac{1}{\pi}$$

$$\frac{\Delta t_{cr}}{T_p} 1000 \le \frac{1}{\pi} \quad \Longrightarrow \quad \Delta t_{cr} \le \frac{T_p}{\pi} \frac{1}{1000} \quad \Longrightarrow \quad \Delta t_{cr} \le \frac{T_p}{3141,6} \quad \text{(much smaller than } T_p/20)$$

- Qual é o conteúdo em freqüência de r_i ?
- Selecionar Δt para representar p modos com precisão.

EI,m

Modos de vibrar:

$$\emptyset_n = A \sin \frac{n\pi x}{L}, n = 1, 2, 3, \dots$$

Frequências naturais:

$$\omega_n = n^2 \pi^2 \sqrt{\frac{EI}{\bar{m}L^4}}, n = 1,2,3, ...$$

Frequência natural	BE (4 elementos)	Chapa (20 elementos)	Valor analítico
1	3,9482	3,9560	3,9478
2	15,8433	15,9240	15,7914
3	36,1262	36,2169	35,5306
4	69,9223	65,3914	63,1655
5	109,5290	104,2780	98,6960
6	110,9720	108,1190	142,1223
7	175,1270	153,9630	193,4442
8	261,6290	215,5530	252,6619
9	317,7380	288,9910	319,7752
10	345,5230	324,3660	394,7842
11	627,6540	367,2850	477,6889
12	907,6420	411,3270	568,4892
13	-	540,7190	667,1853
	-		
207	-	54 878,5000	16 9161,1000

Obs.: Valores de frequências em rad/s.