Física para Engenharia II

4320196 (antiga FEP2196)

Turma 09 - Sala C2-09 3as - 13h10 / 5as - 9h20.

Turma 10 – Sala C2-10 3as – 15h00 / 5as – 7h30.

Profa. Márcia Regina Dias Rodrigues

Depto. Física Nuclear – IF – USP

Ed. Oscar Sala, sala 222

marciadr@if.usp.br

Página do curso (Stoa -> Cursos -> IF -> 432 -> 4320196) http://disciplinas.stoa.usp.br/course/view.php?id=80

O que será abordado neste curso:

Três *Módulos* (quase) independentes:

- Módulo 1 (8 aulas):
 - Oscilações
 - Oscilações forçadas e amortecidas
- Módulo 2 (9 aulas):
 - Ondas.
 - Som.
- Módulo 3 (9 aulas):
 - Teoria da Relatividade Restrita (Einstein).

Bibliografia do curso:

- Módulo 1 (Oscilações):
 - "Sears & Zemansky" de Young & Freedman: Física II Capítulo 13 (Movimento Periódico)
 - H. Moisés Nussenzveig, Curso de Física Básica, vol. 2, Cap. 3
 (Oscilador Harmônico) e Cap. 4 (Oscilações Amortecidas e Forçadas).
- Módulo 2 (Ondas):
 - "Sears & Zemansky" de Young & Freedman: Física II Capítulos 15 (Ondas Mecânicas) e 16 (Som e audição).
 - H. Moisés Nussenzveig, Curso de Física Básica, vol. 2 Capítulo 5 (Ondas) e Capítulo 6 (Som).
- Módulo 3 (Relatividade):
 - "Sears & Zemansky" de Young & Freedman: Física IV Capítulo 37 (Relatividade).
 - H. Moisés Nussenzveig, Curso de Física Básica, (Ed. Edgard Blücher, 2002) vol. 4, Capítulo 6 (Introdução à Relatividade).
 - (*)R. Resnick, Introdução à relatividade especial (Ed. USP, 1971)

^(*) Texto auxiliar, recomendados para leitura.

oyllní	29	30	31	1	2	3	4	Aula 1: Causas da Oscilação e Mov. Harmônico Simples (13.1 e 13.2) Aula 2: Energia no MHS (13.3) Aplicações (Balanças, pêndulo de torção, vibrações de moléculas) (13.4)	
	5	6	7	8	9	10	11	Aula 3: Pêndulo Simples (13.5) Exemplos/exercícios Aula 4: Pêndulo Físico (13.6) Exemplos/exercícios	
agosto	12	13	14	15	16	17	18	Aula 5: Oscilações Amortecidas (13.5) Exemplos e exercícios. Aula 6: Oscilações Forçadas (13.5) Exemplos e exercícios	
ag	19	20	21	22	23	24	25	Aula 7 Ressonância (13.5) Aula 8 Revisão e exercícios	
	26	27	28	29	30	31	1	P1: 30 ago (quinta) - 13h10	
	2	3	4	5	6	7	8	3 a 8/ set Semana da Pátria	
	9	10	11	12	13	14	15	Aula 1 Tipos de Ondas Mecânicas (15.1) Ondas Harmônicas (15.2) Aula 2 Descrição Matemática de Ondas (15.3) Velocidade de uma onda transversal (15.4)	
oro	16	17	18	19	20	21	22	Aula 3 Energia do movimento ondulatório (16.5) Interferência de ondas (15.6) Princípio de superposição, Batimentos Aula 4 Ondas Estacionárias (15.7)	
setembro	23	24	25	26	27	28	29	Aula 5 Modos normais (15.8) Exemplos e Exercícios. Aula 6 Ondas sonoras (16.1) Velocidade de ondas sonoras (16.2) Intersidade do Som (em 1D e 3D) (16.3)	
	30	1	2	3	4	5	6	Aula 7 Som: ondas estacionárias e modos normais (cordas, tubos, etc.) (16.4) Interferência e batimentos (16.6, 16.7) Aula 8 Efeito Doppler (16.8) e Ondas de Choque, Cone de Mach (16.9). Aula 9 (9/10) Revisão e Exercícios	
	7	8	9	10	11	12	13	P2: 11 de Outubro (quinta) - 13h10 (12 out/ Nossa Senhora Aparecida)	

Calendário:

C)
	2
Ξ	5
	ζ
Ź	2
>	>

	14	15	16	17	18	19	20	Aula 1 (18/10) Motivação histórica, Transformações de Galileu; experimento de Michelson-Morley;
outubro	21	22	23	24	25	26	27	Aula 2 (23/10) Postulados da Relatividade e Invariância das Leis Físicas (37.1) Conceito de Simultaniedade (37.2) Aula 3 (25/10) Dilatação do tempo, tempo próprio, "paradoxos" (37.3) Contração do espaço (37.4). Transformações de Lorentz (37.5).
	28	29	30	31	1	2	3	Aula 4 (30/10) Transformações de Lorentz (cont); adição relatística de velocidades (velocidade relativa) (37.5) Efeito Doppler (37.6) Aula 5 (1/11) Momento relativístico e massa relativística (37.7) (2 Nov - Finados)
	4	5	6	7	8	9	10	Aula 6 (6/11) Energia cinética relativística e energia de repouso (37.8) Aula 7 (8/11) Relação energia-momento (37.8)
novembro	11	12	13	14	15	16	17	Aula 8 (13/11) Conservação de energia e momento relativísticos; Colisões. Exemplos/exercícios. (15/nov Proc. República - 16 e 17/ nov Recesso)
ou	18	19	20	21	22	23	24	(20/nov - Dia da Consciência Negra) Aula 9 (22/11) Revisão e exercícios
	25	26	27	28	29	30	1	P3: 29 de Novembro (quinta) - 13h10
	2	3	4	5	6	7	8	SUB: 6 de Dezembro (quinta) - 13h10

Provas e avaliação (regras do jogo):

- Provas:
 - P1 (Módulo 1) Dia **30 de agosto** (quinta-feira, 13h10-15h10).
 - P2 (Módulo 2) Dia **11 de outubro** (quinta-feira, 13h10-15h10).
 - P3 (Módulo 3) Dia **29 de novembro** (quinta-feira, 13h10-15h10).
 - SUB (Módulos 1,2 e 3)(*) Dia 6 de dezembro (quinta-feira, 13h10).

Critério de Avaliação:
$$N_P = \frac{P_1 + P_2 + P_3}{3}$$

N_P: Média das provas

N_F: Nota final

- Se $N_P \ge 5.0$ (e frequência minima 70%) $\rightarrow N_F := N_P$ (aprovado)
- Se 3.0 \leq N_P < 5.0 (+freq. min. 70%) \rightarrow **REC** (N_R, data a definir, Mods. 1,2,3)

$$N_F = (N_P + N_R)/2$$

- □ Se $N_P < 3.0 \rightarrow N_F := N_P$ (reprovado)
- Critério de Aprovação: $N_F \ge 5.0$ (e frequência mínima 70%).

^(*) Todo e qualquer conteúdo ministrado durante o curso pode ser cobrado na SUB, podendo inclusive haver provas diferenciadas dependendo de qual prova foi perdida.

Lembrando que:

4.9 7 5.0

Importante:

- Cada professor disponibilizará dia(s) e horário(s) específico(s) para revisão das provas do curso. Pedidos de revisão fora desses horários deverão ser feitos diretamente ao professor em até cinco dias úteis após a divulgação das notas.
- Pedidos de recorreção(*) de questões devem ser justificados <u>por escrito, com base no gabarito oficial</u>. Só serão atendidos pedidos em que ERROS DE CORREÇÃO sejam identificados.
- Situações típicas de erro de correção são (i) somas incorretas de pontos nas questões/ítens da prova e (ii) soluções corretas e com resultado final indêntico ao do gabarito que foram consideradas incorretas pelo corretor.
- É importante notar que pedidos de "pontos extras" por resultados parciais em questões/ítens cujo resultado final esteja em desacordo com o gabarito não serão, em geral, considerados.
- A SUB é "fechada": apenas quem perdeu alguma das provas poderá realizá-la.
- Todo e qualquer conteúdo ministrado durante o curso pode ser cobrado na SUB, podendo inclusive haver provas diferenciadas dependendo de qual prova foi perdida.
- Listas de exercício: serão disponibilizadas no site da disciplina.

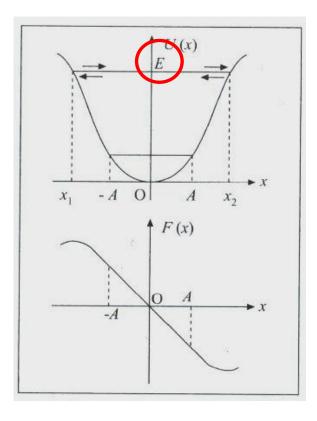
Oscilações

pêndulos, diapasões, cordas em instrumentos musicais, colunas de ar em instrumentos de sopro, corrente alternada, filtros, sistemas de transmissão, ...

Oscilações

Vibrações localizadas

Ondas



propagação

Oscilações periódicas 1D

Ação de forças conservativas

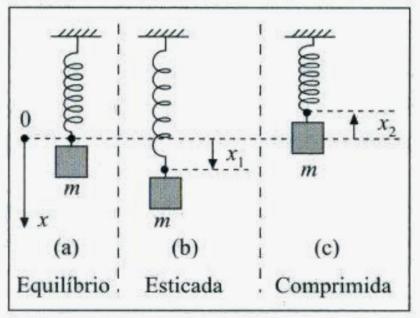
Energia potencial U(x)

Poço Potencial

$$F(x) = -\frac{dU}{dx}$$

Pequenas oscilações ao redor da posição de equilíbrio

$$F(x) \sim linear$$

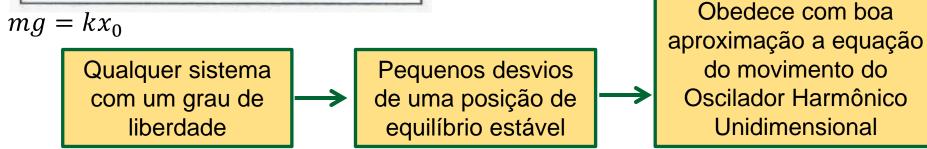

$$-A \le x \le A$$

$$F(x) = -kx$$

Força restauradora – lei de Hooke

$$U(x) = \frac{1}{2}kx^2$$
 ~parábola

Sistema massa-mola



Equação do movimento

$$m\ddot{x} = F(x) = -kx$$

$$\ddot{x} = \frac{d^2x}{dt^2} = -\omega^2 x \qquad \omega = \sqrt{\frac{k}{m}}$$

Oscilador Harmônico Unidimensional

Movimento de um oscilador harmônico

Movimento Harmônico Simples (MHS)

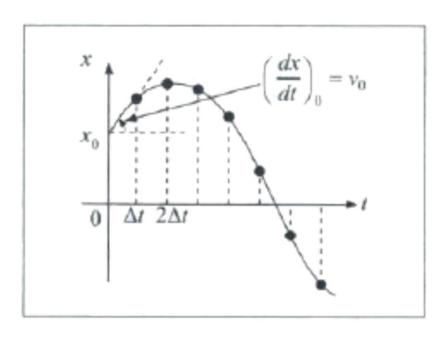
Lei horária do MHS --> Resolver a equação do movimento

$$\ddot{x} = \frac{d^2x}{dt^2} = -\omega^2 x$$

Equação diferencial de segunda ordem para x(t)

Dadas as condições iniciais, equações diferenciais podem ser resolvidas por métodos numéricos (computador).

Para Δt suficientemente pequeno:


$$\frac{d^2x}{dt^2}(t) \approx \frac{1}{\Delta t} \left[\frac{dx}{dt} (t + \Delta t) - \frac{dx}{dt} (t) \right]$$

$$\frac{dx}{dt}(t) \approx \frac{1}{\Delta t} [x(t + \Delta t) - x(t)]$$

Partindo de t = 0:

$$x(\Delta t) \approx x(0) + \Delta t \frac{dx}{dt}(0) = x_0 + v_0 \Delta t$$

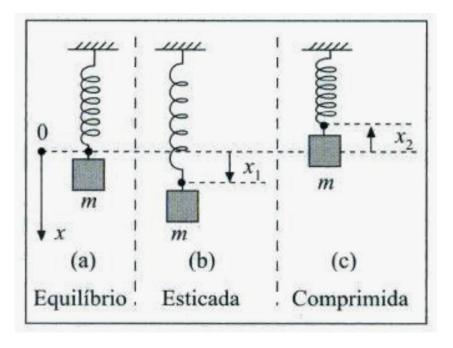
$$\frac{dx}{dt}(\Delta t) \approx \frac{dx}{dt}(0) + \Delta t \frac{d^2x}{dt^2}(0) = v_0 - \omega^2 x_0 \Delta t$$
$$= -\omega^2 x(0)$$

Repetindo o mesmo processo para os intervalos sucessivos

Equação diferencial linear - só contém termos lineares na função independem de x incógnita

$$A\frac{d^2x}{dt^2} + B\frac{dx}{dt} + Cx = F$$

$$F = 0 \rightarrow \text{homogênea}$$


Propriedades de uma equação diferencial linear:

- (a) Se $x_1(t)$ e $x_2(t)$ são soluções $\rightarrow x_1(t) + x_2(t)$ também é solução.
- (b) Se x(t) é solução $\rightarrow ax(t)$ (a =constante) também é solução.

Portanto se $x_1(t)$ e $x_2(t)$ são soluções (independentes) \rightarrow qualquer combinação linear: $x(t)=ax_1(t)+bx_2(t)$, com a e b constantes, também é solução (geral).

Princípio da superposição

Sistema massa-mola

$$\ddot{x} = \frac{d^2x}{dt^2} = -\omega^2 x$$

$$\omega = \sqrt{\frac{k}{m}}$$

A solução aproximada parece uma função do tipo senoidal

Considerando solução do tipo seno e cosseno

$$x_1(t) = sen(\omega t)$$
 $x_2(t) = cos(\omega t)$

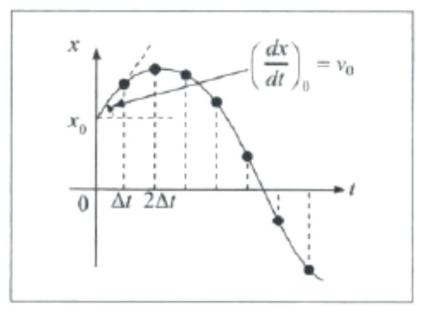
$$\ddot{x} = \frac{d^2x}{dt^2} = -\omega^2 x \qquad \omega = \sqrt{\frac{k}{m}}$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$x_1(t) = sen(\omega t)$$
 $x_2(t) = cos(\omega t)$

Solução geral das oscilações livres do oscilador harmônico

$$x(t) = asen(\omega t) + bcos(\omega t)$$


ou

Com $a, b, A e \varphi$ constantes

$$x(t) = A\cos(\omega t + \varphi)$$

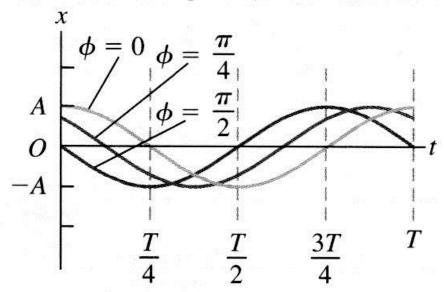
$$\begin{cases} a = A\cos(\varphi) \\ b = -A\sin(\varphi) \end{cases}$$

$$\begin{cases} A = \sqrt{a^2 + b^2} \\ \cos(\varphi) = \frac{a}{\sqrt{a^2 + b^2}} \end{cases}$$

$$x(t) = A\cos(\omega t + \varphi)$$

Oscila entre os extremos −A e A → Amplitude de oscilação

$$(\omega t + \varphi)$$
 \rightarrow Função periódica de ωt de período 2π

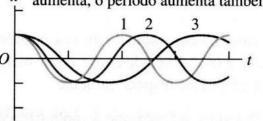

Período de uma oscilação
$$\rightarrow$$
 $\tau = \frac{2\pi}{\omega} = \frac{1}{\nu}$ frequência de oscilação

 $v \rightarrow ciclos/s$ ou hertz (Hz)

$$\omega = 2\pi\nu \rightarrow \text{frequência angular rad/s ou s}^{-1}$$

$$\theta = (\omega t + \varphi) \rightarrow \text{fase do movimento} \qquad \varphi \rightarrow \text{fase inicial}$$

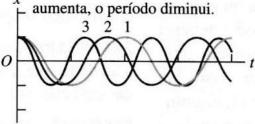
Essas três curvas mostram MHS com o mesmo período T e amplitude A, mas com ângulos ϕ de fase diferentes.



variando $\phi \rightarrow$ desloca a curva como um todo

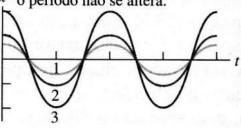
(a) m aumenta; A e k não variam.

A massa *m* aumenta da curva 1 a 2 e a 3. Como apenas *m*


aumenta, o período aumenta também.

(b) k aumenta; A e m não variam.

A constante da mola k aumenta da


curva 1 a 2 e a 3. Como apenas k

(c) A aumenta; k e m não variam.

A amplitude A aumenta da curva 1 a 2 e a 3. Como apenas A varia,

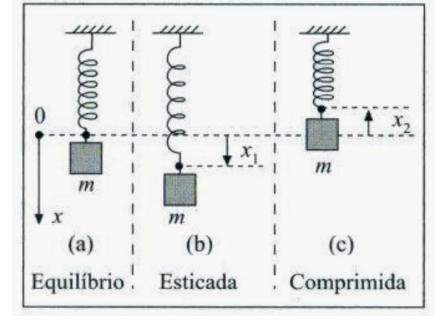
o período não se altera.

Figura 13.10 Variações em um movimento harmônico simples. Todos os casos indicados são para $\phi = 0$.

$$\tau = \frac{2\pi}{\omega} = \frac{1}{\nu}$$
 Independe de A

$$\omega^2 = \frac{k}{m} \qquad k = \left| \frac{F}{x} \right|$$

Força restauradora por unidade de deslocamento e por unidade de massa


$$\ddot{x} = \frac{d^2x}{dt^2} = -\omega^2 x \qquad \omega = \sqrt{\frac{k}{m}}$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$x(t) = A\cos(\omega t + \varphi)$$

$$\dot{x}(t) = v(t) = -\omega Asen(\omega t + \varphi)$$

$$\ddot{x}(t) = a(t) = -\omega^2 A \cos(\omega t + \varphi)$$

Condições iniciais

$$x(0) = x_0$$
 e $v(0) = v_0$

$$\begin{cases} A\cos(\varphi) = x_0 \\ -\omega A sen(\varphi) = v_0 \end{cases} \begin{cases} A = \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}} \\ \cos(\varphi) = \frac{x_0}{\Delta} \end{cases}$$

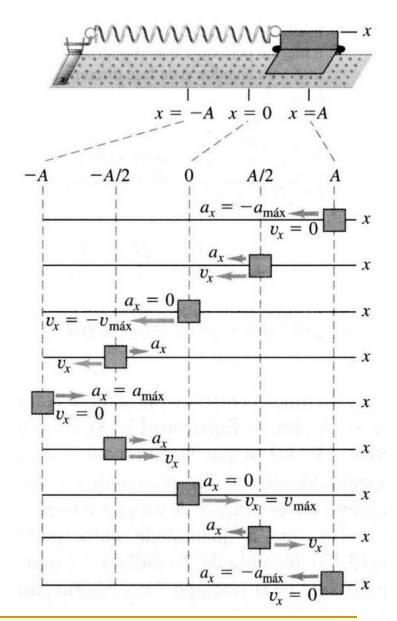
$$A = \sqrt{x_0^2 + \frac{{v_0}^2}{\omega^2}}$$

$$\cos(\varphi) = \frac{x_0}{A}$$

$$\begin{cases} A = \sqrt{a^2 + b^2} \\ \cos(\varphi) = \frac{a}{\sqrt{a^2 + b^2}} \end{cases}$$

$$x(t) = asen(\omega t) + bcos(\omega t)$$

$$x(t) = x_0 sen(\omega t) + \frac{v_0}{\omega} cos(\omega t)$$

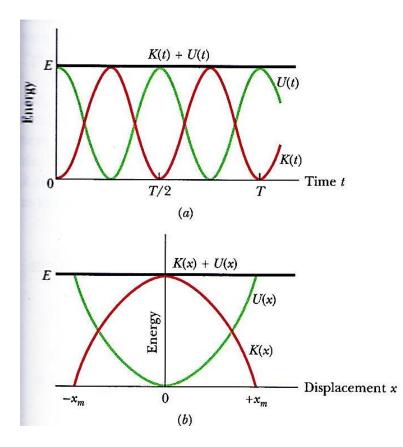

$$\ddot{x} = \frac{d^2x}{dt^2} = -\omega^2 x$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$x(t) = A\cos(\omega t + \varphi)$$

$$\dot{x}(t) = v(t) = -\omega Asen(\omega t + \varphi)$$

$$\ddot{x}(t) = a(t) = -\omega^2 A \cos(\omega t + \varphi)$$

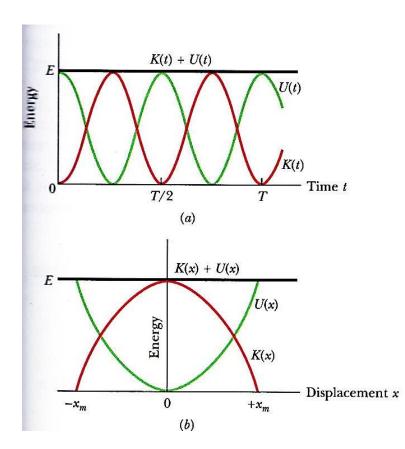


Energia do oscilador harmônico

$$K(t) = \frac{1}{2}m\dot{x}^2 = \frac{1}{2}m\omega^2 A^2 sen^2(\omega t + \varphi)$$

$$U(t) = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2$$
$$= \frac{1}{2}m\omega^2 A^2 \cos^2(\omega t + \varphi)$$

A energia total do sistema se conserva

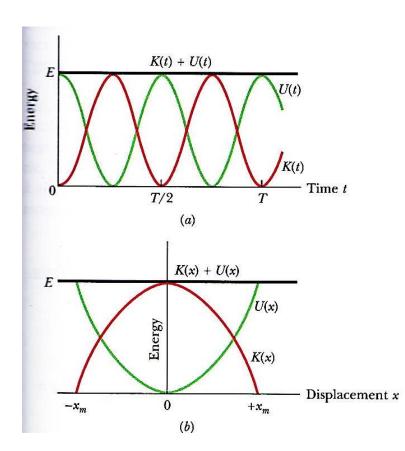

$$E_{total} = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2A^2 = \text{constante}$$

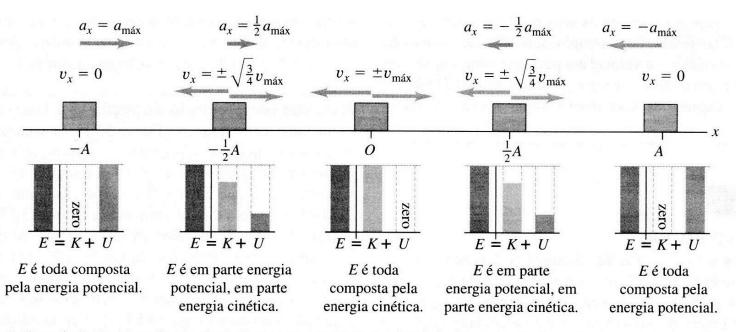
Valor médio f(t) $0 \le t \le \tau$

$$\bar{f}(t) = \frac{1}{\tau} \int_0^{\tau} f(t)dt$$

K e U são simétricos em torno de E/2 (mesma área)

$$\overline{K} = \overline{U} = \frac{1}{2}E = \frac{1}{4}m\omega^2 A^2$$


Energia do oscilador harmônico


$$E_{total} = K + U = \frac{1}{2}m\omega^2 A^2$$

$$K = E - U = \frac{1}{2}m\omega^{2}A^{2} - \frac{1}{2}m\omega^{2}x^{2}$$

$$K = \frac{1}{2}m\left(\frac{dx}{dt}\right)^2 = \frac{1}{2}m\omega^2(A^2 - x^2)$$

$$v = \frac{dx}{dt} = \pm \omega \sqrt{A^2 - x^2}$$

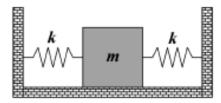
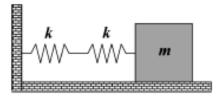
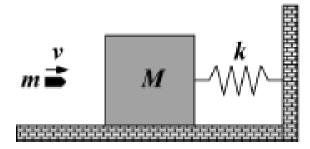


Figura 13.14 Gráficos de *E*, *K* e *U* em função do deslocamento em MHS. A velocidade do corpo *não* é constante, portanto essas imagens do corpo em posições com intervalos espaciais iguais entre si *não* estão colocadas em intervalos iguais no tempo.

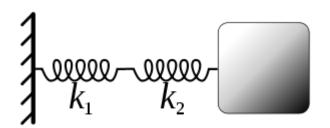
$$v = \frac{dx}{dt} = \pm \omega \sqrt{A^2 - x^2}$$


1. Na figura abaixo, mostramos duas molas idênticas (de constante k) ligadas a um mesmo bloco de massa m, sendo que as outras extremidades das molas estão fixas em suportes rígidos. Mostre que a frequência de oscilação do bloco sobre a superfície horizontal sem atrito é dada por:

$$\nu = \frac{1}{2\pi} \sqrt{\frac{2k}{m}}.$$



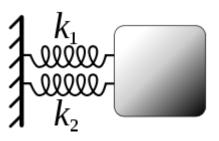
Suponha agora que as duas molas sejam conectadas ao bloco de massa m, conforme é indicado na figura abaixo. Mostre que a frequência de oscilação é dada por:


$$\nu = \frac{1}{2\pi} \sqrt{\frac{k}{2m}}.$$

- 2. A figura abaixo mostra um bloco de massa M, em repouso sobre uma superfície horizontal sem atrito, preso a uma mola de constante k. Uma bala de massa m e velocidade v atinge o bloco em t = 0, conforme é indicado na figura abaixo. A bala permanece dentro do bloco. Determine:
- (a) a velocidade do bloco imediatamente após a colisão;
- a expressão do deslocamento x do sistema para t > 0.

Revisão molas em série e em paralelo

As forças são iguais


$$F_{eq} = F_1 = F_2$$

$$x_{eq} = x_1 + x_2$$

$$k_{eq} = \frac{F_{eq}}{x_{eq}} = \frac{F_{eq}}{x_1 + x_2}$$

$$\frac{1}{k_{eq}} = \frac{x_1}{F_{eq}} + \frac{x_2}{F_{eq}} = \frac{x_1}{F_1} + \frac{x_2}{F_2}$$

$$\frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2}$$

As distâncias são iguais

$$x_{eq} = x_1 = x_2$$
 $F_{eq} = F_1 + F_2$
 $k_{eq} = \frac{F_{eq}}{x_{eq}} = \frac{F_1 + F_2}{x_{eq}}$
 $k_{eq} = \frac{F_1}{x_1} + \frac{F_2}{x_2}$
 $k_{eq} = k_1 + k_2$