Gabarito das Listas de Exercícios

Probabilidade e Estatística Aplicadas à Contabilidade II

Prof. Dr. Marcelo Botelho da Costa Moraes

Capítulo 13 - Regressão Múltipla

Exercícios: 1, 2, 4, 5, 8, 11, 12, 14, 15, 19, 20, 22, 23, 27, 28, 29, 34, 35 e 36

1) a) $b_1 = 0.5906$ é uma estimativa da variação de y correspondente a uma alteração de 1 unidade em x_1 , quando x_2 se mantém constante.

 $b_2 = 0,4980$ é uma estimativa da variação de y correspondente a uma alteração de 1 unidade em x_2 , quando x_1 se mantém constante.

b) Quando $x_1 = 180 \text{ e } x_2 = 310$, temos

$$\hat{y} = 29,1270 + 0,5906x_1 + 0,4980x_2 = 29,1270 + 0,5906(180) + 0,4980(310)$$

$$\hat{y} = 29,1270 + 106,3080 + 154,3800 = 289,8150$$

2) a) A regressão estimada é $\hat{y} = 45,06 + 1,94x_1$

Quando $x_1 = 45$, temos

$$\hat{y} = 45,06 + 1,94(45) = 132,36$$

RESUMO DOS RESULTADOS

Estatística de regressão									
R múltiplo	0,812425462								
R-Quadrado	0,660035131								
R-quadrado									
ajustado	0,617539523								
Erro padrão	25,40091683								
Observações	10								

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	1	10021,24739	10021,24739	15,53184324	0,004289591
Resíduo	8	5161,652607	645,2065758		
Total	9	15182,9			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	Inferior 95,0%	Superior 95,0%
Interseção	45,05936899	25,41814558	1,772724483	0,114210782	-13,55497982	103,6737178	-13,55497982	103,6737178
X1	1,943571186	0,493161259	3,941045958	0,004289591	0,806339284	3,080803089	0,806339284	3,080803089

b) A regressão estimada é $\hat{y} = 85,22 + 4,32x_2$

Quando x_2 = 15, temos

 $\hat{y} = 85,22 + 4,32(15) = 150,02$

RESUMO DOS RESULTADOS

Estatística de regressão								
R múltiplo	0,47066598							
R-Quadrado	0,221526465							
R-quadrado								
ajustado	0,124217273							
Erro padrão	38,43742616							
Observações	10							

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	1	3363,414159	3363,414159	2,276521469	0,169781356
Resíduo	8	11819,48584	1477,43573		
Total	9	15182,9			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	Inferior 95,0%	Superior 95,0%
Interseção	85,21710161	38,35196208	2,221975018	0,057006207	-3,222681531	173,6568848	-3,222681531	173,6568848
X2	4,321488062	2,864161103	1,508814591	0,169781356	-2,283279285	10,92625541	-2,283279285	10,92625541

c) A regressão estimada é $\hat{y} = -18,37 + 2,01x_1 + 4,74x_2$

Quando $x_1 = 45 e x_2 = 15$, temos

 $\hat{y} = -18,37 + 2,01(45) + 4,74(15) = 143,18$

RESUMO DOS RESULTADOS

Estatística de regressão								
R múltiplo	0,962042149							
R-Quadrado	0,925525096							
R-quadrado								
ajustado	0,904246551							
Erro padrão	12,70964216							
Observações	10							

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	2	14052,15497	7026,077487	43,49569643	0,000112729
Resíduo	7	1130,745026	161,5350038		
Total	g	15182,9			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	Inferior 95,0%	Superior 95,0%
Interseção	-18,36826758	17,97150328	-1,022077412	0,340761812	-60,86412008	24,12758493	-60,86412008	24,12758493
X1	2,010185224	0,247118993	8,134482891	8,19328E-05	1,425841659	2,594528789	1,425841659	2,594528789
X2	4,73781182	0,948439668	4,995375015	0,001573456	2,495108381	6,98051526	2,495108381	6,98051526

4) a) $\hat{y} = 25 + 10x_1 + 8x_2$

Quando $x_1 = 15 e x_2 = 10$, temos

$\hat{y} = 25 + 10(15) + 8(10) = 255 \rightarrow \text{Vendas estimadas de $255.000}$

b) Pode ser esperado um aumento das vendas de \$10 para cada aumento de \$1 no investimento em estoques quando os gastos de publicidade são mantidos constantes. Pode ser esperado um aumento das vendas \$8 para cada aumento de \$1 em gastos de publicidade, quando o investimento em estoque é mantido constante.

5) a)
RESUMO DOS RESULTADOS

Estatística de regressão								
R múltiplo	0,807807408							
R-Quadrado	0,652552809							
R-quadrado ajustado	0,594644943							
Erro padrão	1,215175116							
Observações	8							

	gl	SQ	MQ	F	F de significação
Regressão	1	16,64009662	16,64009662	11,26881134	0,015288079
Resíduo	6	8,859903382	1,476650564		
Total	7	25,5			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	Inferior 95,0%	Superior 95,0%
Interseção	88,63768116	1,582367131	56,01587609	2,174E-09	84,76576827	92,50959405	84,76576827	92,50959405
Propaganda de Televisão (em								
milhares de dólares)	1,603864734	0,47778079	3,356905024	0,015288079	0,434777257	2,772952212	0,434777257	2,772952212

RESUMO DOS RESULTADOS

Estatística de regressão								
R múltiplo	0,958663444							
R-Quadrado	0,9190356							
R-quadrado ajustado	0,88664984							
Erro padrão	0,642587303							
Observações	8							

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	2	23,43540779	11,7177039	28,37776839	0,001865242
Resíduo	5	2,064592208	0,412918442		
Total	7	25,5			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	Inferior 95,0%	Superior 95,0%
Interseção	83,23009169	1,573868952	52,88247894	4,57175E-08	79,18433275	87,27585063	79,18433275	87,27585063
Propaganda de Televisão (em								
milhares de dólares)	2,290183621	0,304064556	7,531899313	0,000653232	1,508560796	3,071806446	1,508560796	3,071806446
Propaganda em Jornal (em								
milhares de dólares)	1,300989098	0,320701597	4,056696662	0,009760798	0,476599398	2,125378798	0,476599398	2,125378798

c) Não, os valores são 1,60 na parte (a) e 2,29 na parte (b). A parte (b) representa a mudança marginal na receita devido a um aumento na propaganda de televisão com a propaganda em jornal mantida constante.

d) Receita Bruta = 83,22 + 2,29(3,5) + 1,30(1,8) = \$93,56 ou \$93.560

8) a)
RESUMO DOS RESULTADOS

Estatística de regressão								
R múltiplo	0,125545							
R-Quadrado	0,015762							
R-quadrado ajustado	-0,00317							
Erro padrão	6940,387							
Observações	54							

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	1	40111840	40111840	0,832732	0,365695
Resíduo	52	2,5E+09	48168977		
Total	53	2,54E+09			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	Inferior 95,0%	Superior 95,0%
Interseção	25377,01	3381,829	7,503931	7,79E-10	18590,87	32163,15	18590,87	32163,15
Confiabilidade	869,6543	953,0026	0,912541	0,365695	-1042,69	2781,994	-1042,69	2781,994

 $\hat{y} = 24377,01 + 869,65Confiabilidade$

Como o valor $p = 0.3657 > \alpha = 0.05$, não há uma relação significativa entre o preço e a confiabilidade

RESUMO DOS RESULTADOS

Estatística de regressão)
R múltiplo	0,458672
R-Quadrado	0,21038
R-quadrado ajustado	0,179415
Erro padrão	6277,101
Observações	54

	gl	SQ	MQ	F	F de significação
Regressão	2	5,35E+08	2,68E+08	6,794027	0,002422
Resíduo	51	2,01E+09	39402002		
Total	53	2,54E+09			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	Inferior 95,0%	Superior 95,0%
Interseção	649,4093	7615,708	0,085272	0,932379	-14639,8	15938,58	-14639,8	15938,58
Pontuação em teste de								
estrada	346,7889	97,81308	3,545425	0,00085	150,421	543,1569	150,421	543,1569
Confiabilidade	180,6777	883,56	0,204488	0,838786	-1593,14	1954,498	-1593,14	1954,498

 $[\]hat{y} = 649,\!41 + 346,\!79 Pontuação em teste de estrada + 180,\!68 Confiabilidade$

c)
$$\hat{y} = 649,41 + 346,79(80) + 180,68(4) = $29.115,33$$

b)
$$R^2 = \frac{SSR}{SST} = \frac{6.216,375}{6.724,125} = 0,924$$

c)
$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1} = 1 - (1 - 0.924) \frac{10-1}{10-2-1} = 0.902$$

d) A equação da regressão estimada possui uma excelente eficiência de ajuste.

12) a)
$$R^2 = \frac{SSR}{SST} = \frac{14.052,2}{15.182,9} = 0,926$$
 \Rightarrow exercício 2

b)
$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1} = 1 - (1 - 0.926) \frac{10-1}{10-2-1} = 0.905$$
 \Longrightarrow exercício 2

c) Sim, após o ajuste para o número de variáveis independentes do modelo, vemos que 90,5% da variabilidade em y foi explicada.

14) a)
$$R^2 = \frac{SSR}{SST} = \frac{12.000}{16.000} = 0.75$$

b)
$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1} = 1 - (1 - 0.75) \frac{10-1}{10-2-1} = 0.68$$

c) O coeficiente de determinação indica que 68% da variabilidade é explicada pelas duas variáveis independentes; portanto, conclui-se que o modelo não explica uma grande parcela da variabilidade.

15) a)
$$R^2 = \frac{SSR}{SST} = \frac{23,435}{25,50} = 0,919$$
 \Rightarrow exercício 5

b)
$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1} = 1 - (1 - 0.919) \frac{8-1}{8-2-1} = 0.887$$

c) A análise de regressão múltipla é preferida uma vez que ambos R^2 e R_a^2 mostram um aumento do percentual de variabilidade de y explicado quando ambas as variáveis independentes são utilizadas.

19) a) MSR =
$$SSR/p = 6.216,375/2 = 3.108,188$$

$$MSE = \frac{SSE}{n-p-1} = \frac{507,75}{10-2-1} = 72,536$$

Usando a tabela F (com 2 gl no numerador e 7 gl no denominador), o valor p é menor que 0,01.

Como o valor $p \le \alpha = 0.05$, o modelo como um todo é significativo.

c)
$$t = 0.5906/0.0813 = 7.26$$

Usando a tabela t (com 7 gl), a área na cauda é menor que 0,005, então o valor p é menor que 0,01.

Como o valor $p \le \alpha = 0.05$, β_1 é significativo.

d)
$$t = 0.4980/0.0567 = 8.78$$

Usando a tabela t (com 7 gl), a área na cauda é menor que 0,005, então o valor p é menor que 0,01.

Como o valor $p \le \alpha = 0.05$, β_2 é significativo.

20) Observar tabela - exercício 2

a) Como o valor p correspondente a F = 43,50 é $0,000 \le \alpha = 0,05$, rejeitamos H_0 : $\beta_1 = \beta_2 = 0$, é significativo.

b) Como o valor p correspondente a $t=8,13 \in 0,000 \le \alpha=0,05$, rejeitamos H_0 : $\beta_1=0$, β_1 é significativo.

c) Como o valor p correspondente a $t=5,00 \in 0,002 \le \alpha=0,05$, rejeitamos H_0 : $\beta_2=0$, $\beta_2 \in \text{significativo}$.

22) a) a)
$$SSE = SST - SSR = 16.000 - 12.000 = 4.000$$

$$MSE = \frac{SSE}{n-v-1} = \frac{4000}{7} = 571,43$$

$$MSR = \frac{SSR}{p} = \frac{12000}{2} = 6.000$$

b)
$$F = MSR/MSE = 6000/571,43 = 10,50$$

Usando a tabela F (com 2 gl no numerador e 7 gl no denominador), o valor p é menor que 0,01.

Como o valor $p \le \alpha = 0.05$, rejeitamos H_0 , o modelo como um todo é significativo.

23) Observar tabela \rightarrow exercício 5

a) Como o valor p correspondente a $F = 28,38 \text{ \'e} 0,002 \le \alpha = 0,05$, rejeitamos H_0 : $\beta_1 = \beta_2 = 0$, ϵ significativo.

b) Como o valor p correspondente a t=7,53 é $0,001 \le \alpha=0,05$, rejeitamos H_0 : $\beta_1=0$, β_1 é significativo, x_1 não deve ser retirado do modelo.

c) Como o valor p correspondente a t = 4,06 é 0,010 $\leq \alpha$ = 0,05, rejeitamos H_0 : β_2 = 0, β_2 é significativo, x_2 não deve ser retirado do modelo.

27) a)
$$\hat{y} = 29,1270 + 0,5906(180) + 0,4980(310) = 289,8150$$

b) O ponto estimado para um valor individual é $\hat{y}=289,8150$, é o mesmo estimador por ponto do valor médio.

28) Observar tabela → exercício 2

O Excel não fornece essa informação.

29) Observar tabela → exercício 5

a) Receita Bruta = 83,22 + 2,29(3,5) + 1,30(1,8) = \$93,56 ou \$93.560 → valor exato: \$93.588

b) O Excel não fornece essa informação.

c) O Excel não fornece essa informação.

34) a) \$15.300

b) Estimativa de vendas = 10.1 - 4.2(2) + 6.8(8) + 15.3(0) = 56.1 ou \$56.100

c) Estimativa de vendas = 10.1 - 4.2(1) + 6.8(3) + 15.3(1) = 41.6 ou \$41.600

35) Seja Tipo = 0 se é um reparo mecânico

Tipo = 1 se é um reparo elétrico

RESUMO DOS RESULTADOS

Estatística de regres	ssão
R múltiplo	0,295161
R-Quadrado	0,08712
R-quadrado ajustado	-0,02699
Erro padrão	1,093351
Observações	10

					F de
	gl	SQ	MQ	F	significação
Regressão	1	0,912667	0,912667	0,763472	0,407707
Resíduo	8	9,563333	1,195417		
Total	9	10,476			

		Erro					Inferior	Superior
	Coeficientes	padrão	Stat t	valor-P	95% inferiores	superiores	95,0%	95,0%
Interseção	3,45	0,546676	6,310873	0,00023	2,189364	4,710636	2,189364	4,710636
Tipo de Reparo	0,616667	0,705755	0,873769	0,407707	-1,01081	2,244141	-1,01081	2,244141

b) A equação da regressão estimada não apresenta uma boa eficiência. Na verdade, o valor p de 0,408 demonstra que a relação não é significativa para qualquer valor razoável de α .

c) Seja Técnico = 0 se é for Bob

Técnico = 1 se for Dave

RESUMO DOS RESULTADOS

Estatística de regressão							
R múltiplo	0,781613842						
R-Quadrado	0,610920199						
R-quadrado ajustado	0,562285223						
Erro padrão	0,713792687						
Observações	10						

ANOVA

	gl	SQ	MQ	F	F de significação
Regressão	1	6,4	6,4	12,56133464	0,007573303
Resíduo	8	4,076	0,5095		
Total	9	10,476			

	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores	Inferior 95,0%	Superior 95,0%
Interseção	4,62	0,319217794	14,47287741	5,08347E-07	3,883882447	5,356117553	3,883882447	5,356117553
Pessoa	-1,6	0,451442134	-3,54419732	0,007573303	-2,641027427	-0,558972573	-2,641027427	-0,558972573

d) Podemos ver que 61,1% da variabilidade do tempo de reparo pode ser explicada pelo técnico que realiza o reparo. Uma eficiência aceitável, porém, não é boa.

36) a)
RESUMO DOS RESULTADOS

Estatística de regressão					
R múltiplo	0,948789				
R-Quadrado	0,9002				
R-quadrado ajustado	0,8503				
Erro padrão	0,417434				
Observações	10				

					F de
	gl	SQ	MQ	F	significação
Regressão		3 9,43049	2 3,143497	18,04002	0,002091
Resíduo		6 1,04550	8 0,174251		
Total		9 10,47	'6		

	Erro				95%	95%	Inferior	Superior
	Coeficientes	padrão	Stat t	valor-P	inferiores	superiores	95,0%	95,0%
Interseção	1,86016	0,728634	2,552942	0,043319	0,077257	3,643064	0,077257	3,643064
Meses Desde o Último Serviço de Manutenção	0,291444	0,083598	3,486238	0,013043	0,086886	0,496002	0,086886	0,496002
Tipo de Reparo	1,102406	0,303344	3,634176	0,010911	0,36015	1,844663	0,36015	1,844663
Pessoa	-0,60909	0,38793	-1,5701	0,167444	-1,55832	0,34014	-1,55832	0,34014

- b) Como o valor p correspondente a $F = 18,04 {e} 0,002 {e} \alpha = 0,05$, rejeitamos H_0 , o modelo apresenta uma relação significativa.
- c) Como o valor p correspondente a t = 1,57 é 0,167 > α = 0,05, a pessoa que realizou o conserto não é estatisticamente significativa e deve ser retirada do modelo. O técnico é altamente correlacionado com o número de meses desde o último serviço de manutenção (-0,691), uma vez que o número de meses desde o último reparo é considerado no modelo, o técnico deve ser retirado.