ELETROMAGNETISMO - 4300372

$6^{\underline{a}}$ lista

- 1) Um capacitor de placas planas paralelas, com placas circulares de raio A separadas por uma distância h é carregado através de um fio retilíneo carregando uma corrente $i = i_0 \cos \omega t$.
- a) Calcule o campo magnético num ponto qualquer entre as placas, a uma distância r < A do eixo das placas.
- b) Se uma espira quadrada de lados a e resistência R é colocada entre as placas do capacitor, com seu plano perpendicular às placas, e a uma distância b do eixo das placas, calcule a corrente induzida na espira.
- 2) Uma corrente alternada, $i = i_0 \cos(\omega t)$, passa por um fio longo e reto, retornando através um um tubo condutor coaxial de raio a.
- a) Mostre que o campo elétrico induzido é dado por: $\vec{E} = \frac{\mu_0 i_0 \omega}{2\pi} \sin(\omega t) \ln\left(\frac{a}{r}\right) \vec{k}$.
- b) Encontre a densidade de corrente de deslocamento $\vec{J}_d = \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t}$. c) Integre \vec{J}_d para obter i_d e calcule a razão i_d/i . Dado: $\int r \ln r dr = \frac{r^2}{2} \ln r \frac{r^2}{4}$
- 3) Um longo cilindro circular de raio R tem magnetização $\vec{M} = kr^2 \hat{e}_{\phi}$ onde k é uma constante, e as variáveis estão em coordenadas cilíndricas. Encontre as densidades de corrente de magnetização, e o \vec{B} criado por \vec{M} em todos os ponto do espaço.
- 4) Uma esfera de material magnético, de raio R, é colocada na origem do sistema de coordenadas. A magnetização é dada por $\vec{M} = (az^2 + b)\vec{k}$, onde a e b são constantes. Determine as densidades de corrente de magnetização, e a corrente de magnetização .
- 5) Um longo cilindro circular de raio R tem magnetização $\vec{M} = kr\hat{z}$ onde ké uma constante, e as variáveis estão em coordenadas cilíndricas. Encontre \vec{B} criado por \vec{M} em todos os ponto do espaço por dois métodos diferentes:
- a) calculando todas as correntes de magnetização e usando a lei de Ampère: $\oint_c B.dl = \mu_0 i_M;$
- b) calculando \vec{H} e usando a relação $\vec{H} = \vec{B}/\mu_0 \vec{M}$.
- 6) Um cilindro longo, de raio R e comprimento L, está carregado com uma

densidade de cargas superficial uniforme σ . Um torque aplicado externamente faz com que o cilindro gire em torno do eixo com aceleração constante, tal que $\omega(t) = \alpha t$. Sendo ϵ a permeabilidade elétrica do material e χ_M sua susceptibilidade magnética dertermine: a) os campos \vec{B} e \vec{H} no interior do cilindro. b) O momento de dipolo magnético. c) As densidades de corrente de magnetização. d) \vec{E} e \vec{D} no interior do cilindro. e) o vetor polarização \vec{P} e a densidade de cargas de polarização.

7) Considere um capacitor de placas planas paralelas, com placas circulares de raio λ separadas por uma distância h no processo de carga. Se o espaço entre as placas está preenchido por um material de constante dielétrica K e susceptibilidade magnética χ_M calcule: $\vec{E}, \vec{D}, \vec{B}, \vec{H}, \vec{P}, \sigma_P, \vec{M}$ e i_M .