Raspberry Pi 3 modelo B

Sergio Takeo Kofuji

O Raspberry Pi 3 modelo B

Características	Raspberry Pi 2 Modelo B	Raspberry Pi 3 Modelo B		
CPU	BMC2836 BMC2837			
Velocidad (Sin overclock)	900MHz	1200MHz		
Núcleos	4			
Micro-Arquitectura	ARM Cortex-A7	ARM Cortex-A53		
GPU	VideoCore IV			
Velocidad GPU	300MHz	400MHz		
Memoria	1GB (Compartida con GPU)			
Puertos USB 2.0	4			
Entrada de Video	Conector CSI			
Salida de Video	HDMI/Video Compuesto			
Salida de Audio	Digital/Jack 3.5mm			
Almacenamiento	Tarjeta microSDHC			
Red	Ethernet 10/100	Ethernet 10/100;WiFI;BLE		

BroadCom BMC2837

BCM2837

Multimedia Processors

Chip ¢	Arch.	Clock speed +	Cores +	First seen (FCC) +	Notes ÷
BCM2763	ARM 1176JZF-S	600 MHz	1		Full HD 1080p HP H.264 Video Encode/Decode DualCore VideoCoreIV Multimedia Processor
BCM2835	ARM 1176JZF-S	700 MHz	1	2011-06-29	Full HD 1080p HP H.264 Video Encode/Decode DualCore VideoCore/V Multimedia Co-Processor
BCM2836	ARMv7 Cortex A7	900 MHz	4	2016-04-05	Full HD 1080p HP H.264 Video Encode/Decode DualCore VideoCoreIV Multimedia Co-Processor
BCM2837	ARMv8 Cortex A53	1.2 GHz	4	2016-02-26	Full HD 1080p HP H.264 Video Encode/Decode DualCore VideoCore/V Multimedia Co-Processor
BCM7208	ARM 1176JZF-S	400 MHz	1	2012-02-22	Full HD 1080p HP H.264 Video Encode/Decode DualCore VideoCore/V Multimedia Co-Processor
BCM7218	ARM 1176JZF-S	600 MHz	1	2013-09-17	Full HD 1080p HP H.264 Video Encode/Decode DualCore VideoCore/V Multimedia Co-Processor
BCM7413	MIPS32 16e-class	400 MHz	2	2012-12-10	HD/SD H.264/AVC Main and High Profile 64-bit DDR2 800 MHz DRAM controller
BCM7615	MIPS 24Kc	500 MHz	1	2011-05-23	RCA_DSB772WE_Streaming_Media_Player @ Broadcom SOC's on linux-mips.org @
BCM11130	ARM Cortex A9	900 MHz	2	2013-02-08	Full HD 1080p HP H.264 Video Encode/Decode DualCore VideoCoreIV Multimedia Processor
BCM11140	ARM Cortex A9	1 GHz	2		Full HD 1080p HP H.264 Video Encode/Decode DualCore VideoCoreIV Multimedia Processor

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I ² C)	$\bigcirc \bigcirc$	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	$\bigcirc \bigcirc$	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	\mathbf{O} \mathbf{O}	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	$\bigcirc \bigcirc$	Ground	20
21	GPIO09 (SPI_MISO)	$\bigcirc \bigcirc$	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	\odot	(SPI_CE0_N) GPIO08	24
25	Ground	\mathbf{O}	(SPI_CE1_N) GPIO07	26
27	ID_SD (I ² C ID EEPROM)	\odot	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	\mathbf{O}	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

Especificações Técnicas

- Broadcom BCM2837 64bit Quad Core Processor powered Single Board Computer running at 1.2GHz 1GB RAM
- BCM43143 WiFi on board
- Bluetooth Low Energy (BLE) on board
- 40pin extended GPIO
- 4 x USB 2 ports
- 4 pole Stereo output and Composite video port
- Full size HDMI CSI camera port for connecting the Raspberry Pi camera
- DSI display port for connecting the Raspberry Pi touch screen display
- Micro SD port for loading your operating system and storing data
- Upgraded switched Micro USB power source (now supports up to 2.4 Amps)
- Same form factor as the Pi 2 Model B, however the LEDs have changed position

Alimentação e cartão micro SD

- Fonte de tensão micro USB 5V@2,5 A
- Micro SD CARD: 8GB+ classe 10

Sistemas Operacionais Suportados

- A instalação do NOOBS no micro SD card permite avaliar vários sistemas operacionais.
 - <u>https://www.raspberrypi.org/downloads/</u>
- Alguns sistemas operacionais suportados pelo RBP
 - Raspbian
 - Ubuntu
 - Ubuntu Mate
 - Snappy Ubuntu Core
 - Windows 10 IoT Core
 - OSMC
 - Arch Linux ARM
 - SUSE 64 bits (SLES, openSUSE Leap, e openSUSE Tumbleweed)
 - SLE = Suse Linux Enterprise

Raspbian Jessie

- Vamos utilizar o SO Linux Raspbian Jessy. Não vamos usar o NOOBS
- Site do Raspberry PI:
 - <u>https://www.raspberrypi.org/downloads/</u>
- Site oficial do Raspbian:
 - http://www.raspbian.org

Gravação do cartão FLASH

- Micro SD Card de 8Gbytes, classe 10 ou superior
- No Windows 10:
 - Formatar o micro SD Card, por exemplo, com o utilitário do SD Association
 - <u>https://www.sdcard.org/downloads/formatter_4/eula_windows/</u>
- Descomprimir o arquivo zip com o utilitário 7ZIP (não será necessário se a ferramenta de gravação do cartão SD for o Ether)
- Gravar o cartão Flash
 - Ferramenta Etcher (<u>https://etcher.io/</u>)
 - Ferramenta Win32DiskImager (<u>https://sourceforge.net/projects/win32diskimager/</u>)
- Verifique no Windows as partições que foram gravadas no cartão SD

Procedimento de Boot e de Desilgamento

- Boot:
 - Instale o micro cartão SD ANTES de LIGAR a energia (cabo micro USB)
 - Conecte o cabo de alimentação micro USB (5V@2,5 A)
- Desligamento:
 - Evite desligar o RBP desconectando o cabo micro USB, SEM dar o shutdown do Linux!

Senhas

- Default user: pi
- Default password: raspberry

Teclado

- O teclado default é o Inglês Britânico
- O teclado deve ser configurado para o ABNT2
- A configuração pode ser feita através de comandos ou através da interface gráfica:
 - Preferences->Mouse and Keboard Settings

Root File System

• Examine o diretório raiz do sistema

Dispositivos USB

- Execute o comando Isusb –v
- Examine a listagem e discrimine as seções correspondentes ao teclado e ao mouse

RBP com periféricos

Headless Linux

Captura de vídeo

- Vamos utilizar um webcam instalado em alguma das portas USB
- Instale a ferramenta de vídeo V4L2
 - Requer acesso à internet
 - Conecte a webcam
 - Liste os dispositivos USB
 - Isusb –v
 - Instale o pacote qv4l2:
 - sudo apt-get install qv4l2
- Execute o aplicativo de vídeo pelo menu de "Sound & Video"

Exemplo Simples – Led Blinking

https://www.sunfounder.com/l earn/Super Kit V2 for Raspber ryPi/lesson-1-blinking-led-superkit-for-raspberrypi.html

fritzing

Procedimento em C

Step 1: Change directory

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/01_LED/

Step 2: Compile

gcc led.c –o led –lwiringPi

Step 3: Run

sudo ./led

Procedimento em Python

Step 1: Change directory

cd /home/pi/Sunfounder_SuperKit_ Python_code_for_RaspberryPi/

Step 2: Run sudo python 01_led.py

Código C

- * Filename : led.c
- * Description : Make an led blinking.
- * Author : Robot
- * E-mail : support@sunfounder.com
- * website : www.sunfounder.com
- * Date : 2014/08/27
- #include <wiringPi.h>
- #include <stdio.h>
- #define LedPin 0

```
int main(void)
{
    if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
        printf("setup wiringPi failed !");
        return 1;
    }
```

printf("linker LedPin : GPIO %d(wiringPi pin)\n",LedPin); //when initialize wiring successfully,print message to screen

```
pinMode(LedPin, OUTPUT);
```

while(1){

digitalWrite(LedPin, LOW); //led on
printf("led on...\n");
delay(500);
digitalWrite(LedPin, HIGH); //led off
printf("...led off\n");
delay(500);

return 0;

}

RPP + Raspbian Jessie + OpenCV

<u>http://www.pyimagesearch.com/2016/04/18/install-guide-raspberry-pi-3-raspbian-jessie-opencv-3/</u>

Obrigado

kofuji@usp.br