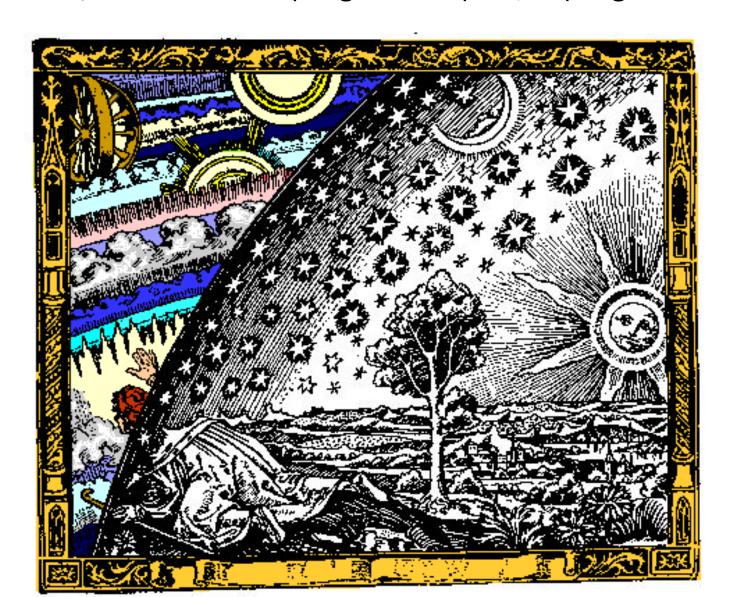

- Classificar estrelas. Como?
- Propriedades próprias (não aparentes)
- Temperatura, massa, luminosidade etc.


AGA 0100

6.1 Magnitude, cor e distância das estrelas

A escala de Magnitude

- Na antiguidade se imaginava que as estrelas representavam objetos de "tamanho" distinto no céu. Os maiores eram mais brilhantes.
- Em ~150 a.c. o astrônomo grego Hiparco (observatório na ilha de Rodes) mediu posição das estrelas e dividiu o seu "tamanho" em 6 classes: classe 1 para as 20 "maiores" e classe 6 para as "menores", mal visíveis a olho nu.
- Tycho Brahe concluiu que as estrelas de primeira magnitude teriam 2 minutos de arco de diâmetro (1/15 do diâmetro aparente da Lua). Estrelas de magnitude 2 a 6 teriam diâmetros de 3/2', 13/12', 3/4', 1/2' e 1/3'.

A "esfera das estrelas fixas" é composta por estrelas de **tamanho** distinto, variando de 2' (magnitude 1) a 1/3' (magnitude 6)

- Somente em meados do século 19, após serem medidas as primeiras distâncias é que se percebeu que as estrelas estavam tão distantes que a classe não representava tamanho, mas brilho, intensidade de objetos puntiformes.
- No ano de 1856, N. Pogson propôs a escala de magnitudes como conhecemos:

$$m = -2.5 \log f + c$$

- Isto introduziu uma escala invertida: as estrelas de primeira classe são as mais brilhantes. As de sexta classe, as menos brilhantes.
- A magnitude visual de Hiparco tem escala logarítmica. A constante c foi medida diretamente da estrela Vega; esta estrela foi definida como tendo magnitude = 0.

O que é Logaritmo?

•
$$10^0 = 1$$
 $\log 1 = 0$

•
$$10^1 = 10$$
 $\log 10 = 1$

•
$$10^2 = 100$$
 $\log 100 = 2$

•
$$10^3 = 1000$$
 $\log 1000 = 3$

•
$$10^{1,301} = 20$$
 $\log 20 = 1.301$

 Se duas estrelas tiverem fluxos f1 e f2, então a diferença de magnitudes será

$$m_1-m_2 = -2,5 \log f_1/f_2$$

Fotometria (foto + metro)

Magnitude visual de algumas estrelas

	~ '		
•		·	110
•	7	I I I	11
			us

Rigel

Betelgeuse

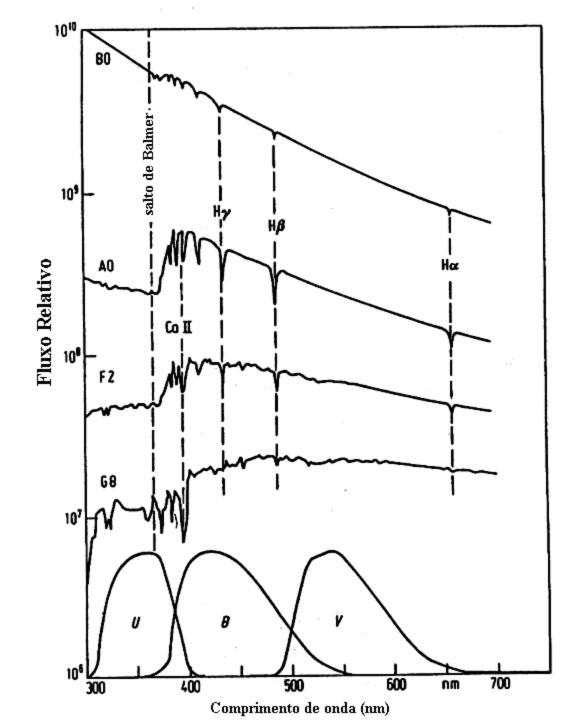
Bellatrix

Mintaka

mag = -1,46

mag = 0,12

mag = 0,42


mag = 1,46

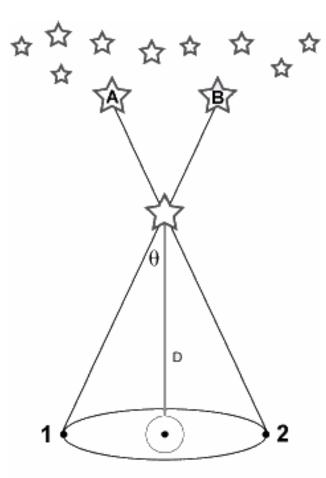
mag = 2,23

A cor das estrelas

Cores das estrelas

- Para os filtros B e V, podemos escrever:
- $B = -2.5 \log f(B) + c$
- $V = -2.5 \log f(V) + c$
- Subtraindo um do outro, temos o índice de cor:

$$B-V = -2.5 \log f(B)/f(V)$$


• Vega tem índice de cor B-V = 0.0

Paralaxe trigonométrica

Parsec = distância que corresponde a θ =1" (um segundo de arco).

Par-sec (paralax of one arc-second)

1 parsec = 3.3 anos-luz

Parallax

Distâncias

- Alfa Centauri 1.3 pc
- Centro da Via Láctea 8 kpc
- Grande Nuvem de Magalhães 50 kpc
- Galáxia de Andrômeda 800 kpc
- Aglomerado de Virgo 16 Mpc

Magnitude absoluta

- m = magnitude aparente
- M = magnitude absoluta (igual à magnitude aparente do mesmo objeto se estivesse a 10 pc).
- A magnitude absoluta está relacionada à luminosidade da estrela (mas não exatamente; depende também da temperatura)

Estrela	Mv	L/L sol	
Prox Cen		15,5	6x10 ⁻⁶
Estr. Barnard		13,2	4x10 ⁻⁴
Sol		4,83	1
Sirius		1.43	24
Betelgeuse		-5,6	$7x10^{5}$
Rigel		-7,0	6x10 ⁴