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This paper examines volatility transmission in oil, ethanol and corn prices in the United States between 1997
and 2011. We follow a multivariate GARCH approach to evaluate the level of interdependence and the
dynamics of volatility across these markets. The estimation results indicate a higher interaction between
ethanol and corn markets in recent years, particularly after 2006 when ethanol became the sole alternative
oxygenate for gasoline. We only observe, however, significant volatility spillovers from corn to ethanol prices
but not the converse. We also do not find major cross-volatility effects from oil to corn markets. The results
do not provide evidence of volatility in energy markets stimulating price volatility in the US corn market.
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1. Introduction

The rapid and continuous increase in the use of ethanol as a fuel
alternative and its potential impact on agricultural markets has re-
ceived much attention in the past years (Rajagopal and Zilberman,
2007). Ethanol is currently the major liquid biofuel produced world-
wide with a global production of over 23,000 million gallons in
2010, almost double the amount produced in 2005 and four times
the amount produced in 2000. While, traditionally, agricultural prices
have been affected by energy (oil) prices through production and
transportation costs, the increased demand for the agricultural pro-
duction of ethanol (e.g., corn in the United States, sugarcane in Brazil)
has raised concerns about a stronger relationship between energy
and agricultural markets, and the likely impact of increasing fuel
prices on agricultural price volatility.1 In addition, the recent spikes
of agricultural prices during 2007–2008, in 2010 and 2011, and the
prevailing high price volatility in agricultural commodities have
reinforced global fears about energy prices stimulating agricultural
price volatility and their potential impacts on the economy.
31 317 484736.
broek),

es and Brazil with 54 and 34%

rights reserved.
These impacts affect different factors at various levels. First, more
volatile crop prices increase costs for farmers to manage price risks
(Wu et al., 2011), altering hedging and investment decisions. Second,
volatility spillovers from oil prices to agricultural commodity prices
are problematic for financial trade portfolios. In recent years agricul-
tural commodities have been included more and more in financial in-
vestment portfolios. However, if oil and agricultural price volatilities
co-move this may worsen portfolio diversification. Third, increased
price volatility of agricultural commodities used for biofuels may
also spill over to other agricultural commodities such as wheat or soy-
beans since these prices are connected to each other via substitution
in supply (acreage) and demand (substitution in animal fodder).
Resulting price volatility in wheat is problematic for importing coun-
tries whose consumers still spend a large share of their incomes on
food. At the macro-level Byrne et al. (2011) indicate that increased
agricultural price volatility also affects the design and effectiveness
of price stabilization policies. Ultimately, increasing food price volatil-
ity is of great concern for policymakers as it constitutes a major threat
to food security of the poor (FAO-OECD, 2011).

Economic theory based on market fundamentals and arbitrage ac-
tivities suggests that oil, ethanol and corn (sugar) prices are interre-
lated (de Gorter and Just, 2008). Increasing crude oil prices directly
affect agricultural prices through higher input and transportation
costs and create an incentive to use alternative energy sources like
biofuels. An upward shift in ethanol demand, in turn, may indirectly
stimulate food prices as ethanol is mainly produced from fodder
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crops. These potential relationships may also be exacerbated or weak-
ened by biofuel mandates, subsidies, and the so-called blending wall.
Consequently, understanding the extent of the oil–ethanol–corn price
relationships, particularly the dynamics of volatility transmission
between these prices, requires additional investigation.

Based on previous studies which suggest the existence of different
interdependencies in the relation between oil, ethanol and corn
prices (see, e.g., Meyer and Thompson, 2010; Babcock, 2011), this
paper follows a multivariate GARCH (MGARCH) approach to examine
the dynamics and cross-dynamics of price volatility in oil, ethanol and
corn markets in the United States between 1997 and 2011. We eval-
uate the magnitude and source of interrelation between markets
and, in particular, whether energy price volatility stimulates price
volatility in the US corn market, either directly from oil to corn, or in-
directly via the oil–ethanol–corn nexus. The period of analysis further
helps us to examine if the degree of interdependence across markets
has changed over time, and whether changes in biofuel mandates
have affected the nature of the links between energy and agricultural
markets. The analysis is complemented with a suitable test for struc-
tural breaks in volatility for strongly dependent processes.

As noted by Serra (2011), studies on volatility transmission between
energy and agricultural markets are still scarce. Previouswork hasmain-
ly focused on assessing price level links based on standard supply andde-
mand frameworks and partial/general equilibriummodels (e.g., Babcock,
2008; Luchansky and Monks, 2009) or based on vector error correction
models (e.g., Balcombe and Rapsomanikis, 2008; Serra et al., 2011b).
However, there are a few studies that explicitly focus on volatility trans-
mission between energy and agricultural commodity prices. Zhang et al.
(2009) examined price volatility interactions between theUS energy and
food markets between 1989 and 2007 using the BEKK model suggested
by Engle and Kroner (1995). Serra et al. (2011a) also used a standard
BEKKmodel to analyze volatility interactions between crude oil, ethanol
and sugarcane prices in Brazil for the period 2000–2008. In another
study on volatility in the Brazilian ethanol–sugarcane nexus, Serra
(2011) used semi-parametric MGARCH models. Wu et al. (2011) esti-
mated a restricted asymmetric MGARCH model using the US corn and
oil prices from 1992 to 2009 to investigate oil price volatility spillover
to corn price volatility. Trujillo-Barrera et al. (2012) estimated a similar
model using futures prices for crude oil, ethanol and corn from 2006 to
2011. Du et al. (2011) used futures market prices for crude oil, corn
and wheat from 1998 to early 2009 to estimate a stochastic volatility
model in order to investigate oil price volatility spillovers to corn and
wheat price volatility. Finally, Nazlioglu et al. (2012) used univariate
GARCHmodels and causality in variance tests to examine volatility trans-
mission between oil and wheat, corn, soybean, and sugar prices.

Our study contributes to this literature in two ways. First, we im-
plement two different MGARCH specifications to provide an in-depth
analysis of the dynamics and cross-dynamics of price volatility across
crude oil, ethanol and corn prices in the United States. As shown by
Gallagher and Twomey (1998), modeling volatility spillovers pro-
vides better insight into the dynamic price relationship between mar-
kets, but inferences about the interrelationship depend importantly
on how we model the cross dynamics in the conditional volatilities
of the markets.2 Therefore, we first estimate a BEKK model, which is
suitable to examine volatility transmission across markets since it is
flexible enough to model own- and cross-volatility spillovers and per-
sistence between markets. We estimate the model using a Student's t
density (so called T-BEKK model). The use of Student's t density is to
account for the leptokurtic distribution of the series we work with,
2 We do not implement more flexible models, like the semiparametric MGARCH
model recently proposed by Long et al. (2011) and applied by Serra (2011), because
this would require separate pairwise analyses of markets due to the inherent “curse
of dimensionality” in nonparametric methods. Our analysis is more in line with studies
by Karolyi (1995) and Worthington and Higgs (2004) on volatility transmission in
stock markets and with Hernandez et al. (in press) who studied volatility spillovers
in agricultural futures markets.
something which is not accounted for in some of the above-
mentioned studies that also estimated a BEKK model (e.g., Serra et
al., 2011a; Zhang et al., 2009).3 We further derive impulse–response
functions for the estimated conditional variances, which help to bet-
ter illustrate the cross-volatility dynamics between markets, and we
formally account for potential breaks in our data. Next, we estimate
a Dynamic Conditional Correlation (DCC) model based on Engle
(2002), which has the advantage of parameter parsimony and per-
mits to analyze volatility interdependence across time between mar-
kets. This is very useful since energy and agricultural commodity
markets have been in substantial turmoil in recent years. As far as
we know this MGARCH specification has not been applied before in
analyzing volatility interactions between energy and agricultural
commodity prices. We also use a Student's t density for the estima-
tion of the DCC model.

Our second contribution regards the data we use to analyze volatil-
ity interactions. Our analysis is based on the weekly US spot prices for
crude oil, ethanol, and corn for the period September 1997 through
October 2011. With this data we are able to overcome some of the
shortcomings of the previous studies. First, the selected sample period
permits us to examine whether there have been important changes in
the dynamics of volatility during periods of special interest with major
structural and regulatory changes in the US biofuel industry. In particu-
lar, our sample covers both the years before and during the ethanol
boom with important changes in energy policies promoting the use of
biofuels and significant improvements in bioenergy technologies; it
also covers the recent food price crises of 2007–2008 and 2011, periods
of particular interest with strong price variations. Most of the studies
reviewed above did not use data from recent years (e.g. Du et al.,
2011; Serra et al., 2011a; Wu et al, 2011; Zhang et al., 2009) or did not
include data from before the US biofuel boom (e.g. Trujillo-Barrera et
al., 2012). Second, we include ethanol prices in our analysis of price vol-
atility interactions. In order to disentangle direct price volatility spill-
overs of crude oil to corn, via input and transportation costs, from
indirect volatility interactions via the biofuel channel, it is essential to
include ethanol prices in the analysis. Studies that did not include etha-
nol prices (e.g. Du et al., 2011; Nazlioglu et al., 2012; Wu et al., 2011;
Zhang et al., 2009) cannot distinguish between direct and indirect ef-
fects. Third, in contrast to studies that use futures prices (e.g. Du et al.,
2011; Trujillo-Barrera et al., 2012) we use spot prices to analyze volatil-
ity interactions. Futures prices are partly driven by other factors than
market conditions (speculation, herd behavior, scalping, etc.). In order
to avoid these additional sources of volatility interactions it is better
to use spot prices.

The remainder of the paper is organized as follows. Section 2 pro-
vides an overview of direct and indirect relations between energy and
corn prices and their volatility with specific attention to biofuel poli-
cies. Section 3 presents the empirical approach used to examine vol-
atility transmission between energy and corn markets. Section 4
describes the data. Section 5 presents and discusses the estimation re-
sults. Section 6 concludes.

2. Interdependencies between energy and corn markets and US
biofuel policies

Energy prices relate to corn prices in various ways. This shapes the
relationship between energy price levels and corn price levels, but
also has implications for the interrelationship between energy and
corn price volatility. In this section we first discuss direct relations
between energy prices and agricultural commodity prices and their
volatility levels. Next, we focus on the indirect relation between ener-
gy and corn prices via biofuels. As Meyer and Thompson (2010) have
argued, there are different interdependencies between crude oil,
3 For further details on MGARCH modeling with a Student's t density see Fiorentini
et al. (2003).



4 For detailed surveys of MGARCH models see Bauwens et al. (2006), or Silvennoinen
and Teräsvirta (2009).
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ethanol, and corn prices, which motivate why volatility spillovers
between energy and corn prices may vary.

2.1. Direct links between oil and agricultural commodity prices

Baffes (2011) warns that when focusing on biofuels when investi-
gating the relation between energy prices and agricultural prices one
should not forget that energy prices also have direct impacts on agricul-
tural prices. Many inputs used in crop production are energy intensive,
in particular nitrogen fertilizer, so that increases in energy prices raise
the cost of production. Moreover, transportation costs increase in oil
prices, which may also lead to higher commodity prices. Agricultural
commodity prices do not only rise when oil prices increase, but the re-
lationship between these prices also intensifies at higher prices. Baffes
(2011) shows that the elasticity of food prices with respect to oil prices
is higher if the recent 2005–2010 period (with relatively high crude oil
prices) is considered in estimation. A stronger relationship between oil
and food prices implies that volatility shocks in oil prices will also lead
to bigger shocks in food price volatility. A few studies exist that investi-
gate the relation between oil prices and agricultural prices in the ab-
sence of biofuel effects. Babula and Somwaru (1992) show that oil
price shocks have substantial impact on the prices of fertilizer and pes-
ticides. Chaudhuri (2001) concludes that many agricultural commodity
export prices adjust to oil price shocks. Alghalith (2010) focused on the
effects of oil price levels and oil price volatility on food prices and found
that both lead to higher food prices.

2.2. Variations in the crude oil, ethanol, and corn price relationship

The recent boom in biofuel production has renewed attention for
the links between energy and food prices, leading to a number of
studies on this relationship. Many of these studies use time-series
econometric techniques to quantify the relation between oil, ethanol,
and food prices in levels (e.g., Balcombe and Rapsomanikis, 2008;
Serra et al., 2011b) or their volatility interactions (e.g., Serra, 2011;
Serra et al., 2011a; Zhang et al., 2009).

When analyzing price volatility interactions it is important to real-
ize that the relations between crude oil, ethanol and corn prices are
not constant. Meyer and Thompson (2010) argue that there are dif-
ferent sources of ethanol demand leading to a highly non-linear eth-
anol demand curve with a varying price elasticity. One source of
ethanol demand stems from the addition of ethanol as oxygenate to
gasoline. This kind of demand is price inelastic with respect to ethanol
and gasoline prices. A second source of ethanol demand arises when
ethanol prices are on par with gasoline prices so that ethanol is a
competitive substitute for gasoline leading to price elastic demand
for ethanol. In this range the ethanol price is driven by the oil price.
Finally, the maximum amount of ethanol that can be absorbed by
the market due to maximum blending (the so-called blending wall)
and the number of flex-fuel cars, marks the transition to a third re-
gime of ethanol demand. In this regime ethanol demand is again
price inelastic with respect to ethanol and crude oil prices.

Ethanol supply, which is a function of ethanol prices and corn prices,
also has different price elasticity regimes (Meyer and Thompson, 2010).
When ethanol production capacity is not fully used, supply is somewhat
elastic with respect to corn and ethanol prices. However, when the
sector operates at full capacity supply is highly price inelastic in the
short-run.

The values of both price elasticities for ethanol demand and supply
eventually determine what the effect of oil price shocks is on ethanol
and corn prices. Since these elasticities vary over time, the effect of oil
price shocks on other markets will also differ. The fluctuating relation
between crude oil, ethanol and corn prices is further complicated by
biofuel policies such as mandates and tax credits. For example, the
well-known replacement of MTBE by ethanol as an oxygenate which
culminated in 2006 led to a substantial increase in demand for ethanol
that raised ethanol prices sharply andmade ethanol demandmore price
inelastic, and disconnected ethanol prices from gasoline prices in the
short run. In the corn market, prices rose mildly as ethanol only consti-
tuted 14% of the total US corn demand in 2005/2006 (Meyer and
Thompson, 2010). However, with the share of corn used for ethanol
rising to 40% in 2012 (USDA, 2012), the effect of ethanol price changes
on corn prices can bemuch stronger. For an overview of biofuel policies
see Sorda et al. (2010).

In short, the relationship between oil, ethanol and corn prices
varies over time due to different price regimes and policies. Therefore,
a proper econometric analysis of price volatility interactions should
examine these potential variations in volatility dynamics between
markets across time.

3. Methodology

We follow a MGARCH approach to examine the level of inter-
dependence and the dynamics of volatility between oil, ethanol and
corn markets in the United States. In particular, we estimate both a
T-BEKK model and a DCC model. The BEKK model is suitable to charac-
terize volatility transmission across markets since it is flexible enough
to account for own- and cross-volatility spillovers and persistence be-
tween markets. The DCC model approximates a dynamic conditional
correlation matrix, which permits to evaluate whether the level of
interdependence between markets changes across time.4

Consider the following model,

rt ¼ γ0 þ
Xp

j¼1

γjrt−j þ εt ;

εt It−1∼ 0;Htð Þ;j
ð1Þ

where rt is a 3 × 1 vector of price returns for oil, ethanol and corn, γ0 is
a 3 × 1 vector of long-term drifts, γj, with j = 1,..,p, are 3 × 3matrices
of parameters, and εt is a 3 × 1 vector of forecast errors for the best
linear predictor of rt, conditional on past information denoted by
It − 1, and with corresponding variance–covariance matrix Ht. As in a
standard VAR representation, the elements of γj, j = 1,..,p, provide
measures of own- and cross-mean spillovers between markets.

In the BEKK model with one time lag, the conditional variance–
covariance matrix Ht is given by

Ht ¼ C′C þ A′εt−1ε
′
t−1Aþ G′Ht−1G; ð2Þ

where C is a 3 × 3 upper triangular matrix of constants cij, A is a 3 × 3
matrix containing elements aij that measure the degree of innovation
from market i to market j, and the elements gij of the 3 × 3 matrix G
show the persistence in conditional volatility between markets i and
j. This specification guarantees, by construction, that the covariance
matrices are positive definite. The conditional variance–covariance
matrix defined in Eq. (2) permits us to analyze the direction, magni-
tude and persistence of volatility transmission across markets. In par-
ticular, it allows us to derive impulse–response functions for the
conditional volatilities to show how a shock originated in a market
may affect the other markets under analysis.

In the DCC model, which assumes a time-dependent conditional
correlation matrix Rt = (ρij,t), i, j = 1, …, 3, the conditional variance–
covariance matrix Ht is defined as

Ht ¼ DtRtDt ð3Þ

where

Dt ¼ diag h1=211;t…h1=233;t

� �
; ð4Þ
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Fig. 1. Oil, ethanol and corn prices and volatility, 1997–2011. Note: Prices deflated by
CPI (1982–84 = 100). Monthly volatility based on real weekly prices.
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hii,t is defined as a GARCH(1,1) specification, i.e. hii,t = ωi + αiεi,t − 1
2 +

βihii,t − 1, i = 1,…, 3, and

Rt ¼ diag q−1=2
ii;t

� �
Qtdiag q−1=2

ii;t

� �
ð5Þ

with the 3 × 3 symmetric positive-definite matrix Qt = (qij,t), i, j = 1,
…, 3, given by

Qt ¼ 1−α−βð ÞQ þ αut−1u
′
t−1þβQt−1; ð6Þ

and uit ¼ εit=
ffiffiffiffiffiffiffi
hiit

p
. Q is the 3 × 3 unconditional variance matrix of ut,

and α and β are non-negative adjustment parameters satisfying
α + β b 1. Qt basically resembles an autoregressive moving average
(ARMA) type process which captures short-term deviations in the
correlation around its long-run level. The variance–covariance matrix
defined in Eq. (3) permits us, then, to model the degree of volatility
interdependence between markets across time.

4. Data

The data used for the analysis are weekly prices for US crude oil, eth-
anol and corn from September 1997 through October 2011. As noted
above, the sample period covers both thepre- andethanol boomperiods
with significant changes in biofuel use mandates. Oil prices are West
Texas Intermediate crude oil FOB spot prices from the Energy Informa-
tion Administration (EIA). Ethanol prices are denatured fuel ethanol
spot prices for blending with gasoline from the Chicago Board of Trade
(CBOT).5 Corn prices are No.2 yellow corn FOB Gulf prices reported by
the Food and Agriculture Organization. Table A.1 in the Supplementary
Appendix provides further details on the sources of information used.

Fig. 1 shows the evolution, in real terms, of crude oil, ethanol and
corn prices and their volatility during the sample period. As observed,
price movements in the three markets seem to be highly correlated,
with important price spikes during the food crisis of 2007–2008 and
in the past year. The price spike in ethanol in 2006, the year where
MTBE was effectively banned in the United States, is also remarkable.
A third observation is that corn prices have increased rapidly since
mid-2010, whereas ethanol and crude oil prices rose more gradually.
The correlation acrossmarkets is further corroboratedwhen comparing
the volatility in prices (measured using a movingmonthly standard de-
viation). Again, a few observations can be made. Up to 2000, ethanol
and crude oil prices were very stable and only corn prices showed
some volatility. Between 2005 and 2007 there were huge fluctuations
in ethanol prices, whereas corn prices and crude oil prices fluctuated
very mildly. In 2008 corn prices fluctuated a lot, crude oil prices only
by the end of the year, but ethanol prices did not show much volatility
then. After a rather quiet period around 2010 for all three prices, partic-
ularly corn prices started to fluctuate again, and to a lesser degree crude
oil prices. Fluctuations in ethanol are not much different from the aver-
age volatility since 2000. Overall, the figure suggests not only some con-
nections between unconditional volatility, but also periodswithweaker
or absent co-movement in volatility.

Table 1 provides additional insight about the potential interde-
pendencies between the three markets. The table reports Pearson
correlations of weekly price returns for different sample periods.
The returns are defined as yt = log(Pt/Pt − 1), where Pt is the price
of oil, ethanol or corn at week t.6 We subdivide our sample period
5 We also identified average ethanol rack prices in Nebraska, starting on July 2003,
from the Nebraska Ethanol Board; this state is the second largest ethanol producer in
the United States after Iowa. We find a 0.96 correlation between these prices and the
CBOT ethanol prices used in the analysis.

6 This logarithmic transformation is a good approximation for net returns in a mar-
ket and is usually applied in empirical finance to obtain a convenience support for the
distribution of the error terms.
in 1997–2005 and 2006–2011 considering the major demand expan-
sion for ethanol in 2006 after MTBE was effectively banned as an ox-
ygenate for gasoline in the United States.7 A comparison across
periods indicates that energy and corn markets have become more
interconnected in recent years. We find a statistically significant pos-
itive correlation in all returns for 2006 onwards; the correlation be-
tween corn and ethanol returns is also stronger than the correlation
between the other price returns. Prior to 2006, we only observe a sig-
nificant correlation between oil and ethanol returns. A first look at the
data suggests that energy and corn markets in the United States ap-
pear to be interrelated, particularly during more recent years. Yet
establishing sources of interdependence on price volatility transmis-
sion requires further analysis as discussed below.

Turning to the statistical properties of the return series, Table 2 pre-
sents descriptive statistics for the price returns in each market (multi-
plied by 100). Several patterns emerge from the reported statistics.
First, oil returns are roughly 2.5–3 times higher than the returns in eth-
anol and corn. The average weekly return in this market is 0.17% versus
0.06% in ethanol and 0.07% in corn. Second, the returns in the threemar-
kets appear to follow a non-normal distribution. The Jarque–Bera statis-
tic rejects the null hypothesis that the returns are well approximated
7 A test for structural breaks in volatility, discussed below, also suggests an impor-
tant shift during mid-2006 in the dynamics of ethanol price returns.



Table 1
Correlation of weekly returns, 1997–2011.

Commodity 1997–2005 2006–2011 Total sample

Oil Ethanol Corn Oil Ethanol Corn Oil Ethanol Corn

Oil 1.000 0.166* −0.010 1.000 0.268* 0.278* 1.000 0.217* 0.143*
Ethanol 1.000 0.029 1.000 0.381* 1.000 0.240*
Corn 1.000 1.000 1.000
# observations 433 304 737

Note: The correlations reported are the Pearson correlations. The symbol (*) denotes significance at 5% level.
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by a normal distribution. The kurtosis in all markets exceeds three,
pointing to a leptokurtic distribution. We therefore estimate both the
BEKK and DCC models assuming a Student's t density for the innova-
tions.8 Third, while the Ljung–Box (LB) statistics for up to 6 and 12
lags reject the null hypothesis of no autocorrelation for both oil and
ethanol returns, they uniformly reject the null hypothesis for the
squared returns in all three markets. This autocorrelation in the weekly
squared returns is indicative of nonlinear dependency in the returns,
probably due to time varying conditional volatility, as observed in
Fig. 2 which plots the three weekly returns series. These patterns moti-
vate the use of a MGARCH approach to model the interdependencies in
the first and secondmoments of the returns within and across markets.
Finally, proper specification of themean equation in anMGARCHmodel
requires investigating whether the returns series are non-stationary
in order to account for potential long-run relationships between
them. Therefore, we applied augmented Dickey–Fuller tests with non-
stationarity as null hypothesis and KPSS tests that have stationarity as
null hypothesis. The last block in Table 2 shows that both tests confirm
the stationarity of the three returns series.

5. Results

This section presents the estimation results of the MGARCH
models used to examine the level of interdependence and volatility
transmission between energy and agricultural markets in the United
States. We first present the estimation results of the T-BEKK and
DCC models using the full sample, which constitute our base results.
The T-BEKK model allows us to analyze volatility spillovers and per-
sistence effects between oil, ethanol and corn prices, while the DCC
model permits us to evaluate if the degree of interdependence be-
tween these markets has changed across time. We then present the
estimation results of the T-BEKK model for different sample periods
in light of potential shifts in the dynamics of volatility across these
markets due to changes in biofuel policies and the recent food price
crisis of 2007–2008.

5.1. Base results

Table 3 reports the coefficient estimates for the conditional mean
return equation (top panel) and the conditional variance–covariance
matrix (bottom panel) of the T-BEKK model. This model allows for
own- and cross-volatility spillovers and persistence between markets.
The lag length (one lag) corresponds to the optimal number as deter-
mined by the Schwarz's Bayesian information criterion or SBIC (equal
to 15.8). The residual diagnostic tests reported at the bottom of the
table support the adequacy of the model specification. The Ljung–Box
(LB), Lagrange Multiplier (LM) and Hosking Multivariate Portmanteau
8 It is worth noting that we find qualitatively similar results when estimating the
BEKK model using a quasi-maximum likelihood (QML) method with a normal distribu-
tion of errors. Bollerslev and Wooldridge (1992) show that this method can result in
consistent parameter estimates if the log-likelihood function assumes a normal distri-
bution while the series are skewed and leptokurtic.
(HM) test statistics for up to 6 and 12 lags showno evidence of autocor-
relation, ARCH effects and cross-correlation in the standardized squared
residuals of the estimatedmodel. The estimated degrees of freedom pa-
rameter (v) is also small (6.4), further supporting the appropriateness
of the estimation with a Student's t distribution.

In the conditional mean equation, the γ1ii coefficients, i = 1, …, 3,
capture own-market dependence, i.e. the dependence of the return
in market i on its lagged value, while the γ1ij coefficients capture
cross-market dependence, i.e. the dependence of the return in market
i on the lagged return in market j. The results indicate that there are
no cross-market mean spillovers between oil, ethanol and corn mar-
kets. The observed mean return in a market is only influenced by
the lagged return in the same market but not by the lagged returns
in the other markets. In sum, energy and agricultural markets do
not seem to be interrelated at the mean level.9 In addition, while en-
ergy markets (especially ethanol) exhibit strong and positive own-
mean spillovers, corn markets show negative own-mean spillovers.
The latter finding can be explained from substitution effects in de-
mand. A high return for corn is connected to an increase in corn
prices, which may dampen demand for corn and raise demand for
substitutes (e.g. soybeans as animal fodder) leading to lower corn
returns the next period, and vice versa. This demand substitution is
less relevant for crude oil and ethanol, where returns are more driven
by slowly changing macro-economic conditions.

Turning to the conditional variance–covariance equation, the diago-
nal aii coefficients, i = 1,…, 3, capture own-volatility spillovers, i.e. the
effect of lagged innovations on the current conditional return volatility
in market i, and the diagonal gii coefficients capture own-volatility per-
sistence, i.e. the dependence of volatility in market i on its own past
volatility. The results reveal significantly large own-volatility effects in
the three markets, indicating the presence of strong GARCH effects.
Own-volatility spillovers have a higher initial effect in ethanol than in
crude oil and corn, but the ethanol market also exhibits the lowest
own-volatility persistence. This suggests that while own information
shocks have a relatively important, short-term effect on the volatility
of ethanol price returns, the returns in this market derive at the same
time less of their volatility persistence from their own market, as com-
pared to oil and corn returns where own volatility shocks have a more
persistent effect over time.

Regarding the cross-dynamics, it is important to distinguish between
direct and full effects across markets. In particular, the off-diagonal aij
and gij coefficients measure direct spillover and persistence effects be-
tweenmarkets. The aij coefficients capture the direct effects of lagged in-
novations originating in market i on the current conditional volatility in
market j, while the gij coefficients capture the direct dependence of vol-
atility in market j on that of market i. Yet, to analyze full interactions
across markets we need to account for both direct and indirect effects.
9 Although not reported, a comparison of these mean spillover results with the re-
sults of a standard VAR model suggests that the dynamics of the conditional volatility
processes builds important structure into the first moment relationships. More specif-
ically, the VAR estimates indicate some mean-spillovers from oil to ethanol returns,
which disappear after we allow for cross-volatility dynamics between markets.



10 We also estimated a varying conditional correlation (VCC) model developed by Tse
and Tsui (2002), which has a dynamic correlation structure very similar to that of the
DCC. The estimation results and correlation patterns obtained with the VCC model are
very similar to those of the DCC model. Further details are available upon request from
the authors.
11 We do find some volatility spillovers from oil to corn markets and from oil to eth-
anol markets when segmenting our sample, which we discuss in the next section.

Table 2
Summary statistics for weekly returns.

Crude oil Ethanol Corn

Statistic
Mean 0.165 0.061 0.077
Median 0.492 0.000 −0.065
Minimum −19.261 −19.748 −13.796
Maximum 24.768 19.855 18.931
Std. Dev. 4.585 3.415 3.759
Skewness −0.312 −0.007 0.194
Kurtosis 5.623 7.936 4.923
Jarque–Bera 222.28 748.30 118.20
p-value 0.00 0.00 0.00
# observations 737 737 737

Returns correlations
AC (lag = 1) 0.122* 0.436* −0.092*
AC (lag = 2) −0.089* 0.261* 0.033
Ljung–Box (6) 24.37* 201.18* 11.00
Ljung–Box (12) 46.27* 214.69* 18.03

Squared returns correlations
AC (lag = 1) 0.244* 0.226* 0.119*
AC (lag = 2) 0.257* 0.038 0.041
Ljung–Box (6) 177.85* 43.93* 57.49*
Ljung–Box (12) 257.08* 98.32* 111.71*

Tests for stationarity
ADF (lag = 13) −5.964* −7.353* −6.134*
KPSS (lag = 6) 0.038 0.032 0.179

Note: The symbol (*) denotes rejection of the null hypothesis at the 5% significance
level.
AC is the autocorrelation coefficient.
Lags in ADF test based on significance in auxiliary regression.
Lags in KPSS test based on Schwert criterion.
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Markets in a BEKK model may be directly interrelated through the
conditional variance and indirectly related through the conditional co-
variance. Hence, the dynamics of volatility across markets ultimately
comprises all off-diagonal aij and gij coefficients.

The Wald test reported in Table 3 rejects the null hypothesis that
the cross effects (i.e. off-diagonal coefficients aij and gij) are jointly
equal to zero with a 99 percent confidence level. The cross effects,
however, are generally smaller in magnitude than the own effects.
The non-causality in variance tests further indicates that only the eth-
anol market seems to be directly affected by past innovations and
variance from the other markets, particularly from the corn market
as discussed next.

The estimated parameters of the T-BEKK model further permit
us to derive an impulse–response analysis of the conditional return
volatilities. This analysis provides additional insights about the
cross-volatility dynamics between markets, including the direction of
volatility interdependence. The simulation comprises both direct and
indirect effects across markets after simulating an initial shock in one
of them. Fig. 3 presents the impulse–response functions derived by
iterating, for each market variance resulting from Eq. (2), the response
to an innovation equivalent to a 1% increase in the conditional volatility
of themarketwhere the innovation first occurs. The responses aremea-
sured as percentage deviations from the initial conditional volatility in
each market. The simulation indicates that a shock originated in the
corn market has a relatively higher initial effect on the volatility of
returns in the ethanol market than on the own corn market (1.4 times
larger). This strong volatility spillover effect from corn to ethanol is
due to the importance of corn as major input in US ethanol production.
The lack of persistence in the impulse–response functions of the ethanol
market is also interesting; the adjustment process in this market is very
fast after an own or cross (corn) innovation. This suggests that volatility
shocks are processed very fast by traders. As indicated above, separate
volatility innovations in oil and ethanol markets do not appear to spill
over to other markets. This implies that corn price volatility is not
affected by volatility in crude oil via input prices (e.g. via energy and fer-
tilizer prices), nor that additional volatility in corn has arisen due to
ethanol.

This result partially resembles the findings of Zhang et al. (2009),
who also do not find important spillover effects from energy to agri-
cultural markets. These authors, however, also do not find volatility
spillovers from corn to ethanol markets as we do (they only find
cross effects from soybeans to ethanol prices). A possible explanation
for the different findings is that our analysis includes a more recent
sample period, where the interdependencies between corn and etha-
nol markets (particularly from corn to ethanol prices) seem to have
become stronger, as inferred also from our preliminary analysis. Our
results also tie with those of Trujillo-Barrera et al. (2012) who work
with futures prices. The authors find volatility transmission from
corn to the ethanol market in recent years (2006–2011), but not
the opposite. Yet, the authors further find volatility spillovers from
crude oil to both corn and ethanol markets, which could be explained
by the use of futures prices (instead of spot prices) that are also likely
driven by speculation, herd behavior and scalping, among other
factors. In the next section, we evaluate changes in the dynamics
of volatility transmission between energy and corn prices across dif-
ferent periods, after appropriately segmenting our sample based on
the presence of structural breaks in the analyzed series.

Table 4 reports the full estimation results of the DCC model.
This model allows us to examine whether the level of volatility
interdependence between markets has changed across time.10 As in
the T-BEKKmodel, the number of lags (one lag) corresponds to the op-
timal number as determined by the Schwarz criterion (equal to 15.7).
The reported diagnostic tests for the standardized squared residuals
(LB, LM and HM statistics) and the estimated degrees of freedom pa-
rameter (5.9) also support the adequacy of the model specification.

The magnitude and direction of the coefficient estimates in the
conditional mean equation (top panel) are very similar to the esti-
mates obtained using the T-BEKK model. Again, we do not observe
mean spillovers in the returns across energy and corn markets, and
both oil and ethanol returns show positive own-market dependence
while corn returns exhibit a negative dependence.

Regarding the conditional variance–covariance equation (bottom
panel), theWald test rejects the null hypothesis that the adjustment pa-
rameters α and β are jointly equal to zero at a one percent significance
level, suggesting that the time-variant conditional correlations between
markets assumed in the DCC model are a plausible assumption.

Fig. 4 presents the dynamic conditional correlations for eachmarket
pair, which result from the DCC model estimates. The figure also in-
cludes constant conditional correlations and one standard deviation
confidence bands for comparison, based on Bollerslev (1990) CCC
model. Whereas the T-BEKK results indicated volatility spillovers from
corn to ethanol for the full sample, the DCC estimates shows an impor-
tant increase in the level of volatility interdependence between ethanol
and corn markets in recent years. The correlation has changed from a
small or negative correlation to a positive and increasing relationship
beginning on 2007, one year after MTBE was effectively banned in the
United States and left ethanol as the alternative oxygenate for gasoline.
The interdependence between oil and corn markets also appears to
have increased in recent years, although we do not findmajor volatility
spillover effects across these markets when using the T-BEKKmodel on
our full sample.11
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Fig. 2. Oil, ethanol and corn weekly returns, 1997–2011.
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The correlation between oil and ethanol markets, in turn, has ba-
sically fluctuated across time without a particular trend, but with im-
portant peaks both during the first major expansion of ethanol
refining in the United States in the beginning of the 2000s and during
the recent food crisis of 2007–2008. The other market correlations
considered also show peaks during the recent food crisis, suggesting
an overall higher interrelation between energy and corn markets
during that specific period.
5.2. Volatility interactions across time

We now turn to examine if the conditional volatility interactions
between energy and corn markets have changed across time consid-
ering the important changes in biofuel policies in the United States
in the past decade and the food price crisis of 2007–2008. To perform
this task, we first formally test for the presence of structural breaks in
the volatility of the return series under analysis. Based on these test
results, we then segment our sample accordingly and estimate the
T-BEKK model over the different sample periods to evaluate if there
have been changes in the dynamics and cross-dynamics of volatility
between oil, ethanol and corn markets. This procedure also allows
us to account for potential effects (if any) of structural breaks when
examining cross-volatility dynamics (see also Van Dijk et al., 2005).

We implement the test for the presence of unknown structural
breaks proposed by Lavielle and Moulines (2000), which is suitable
for strongly dependent processes such as GARCH processes (Carrasco
and Chen, 2002). In particular, this test assumes beta-mixing condi-
tions, which are satisfied by GARCH processes. Similar to Benavides
and Capistran (2009) and Hernandez et al. (in press), we apply the
test over the squared returns as a proxy for volatility. Fig. A.1 in the
Supplementary Appendix shows the results of the test. The identified
break dates represent the estimated change-points using theminimum
penalized contrast procedure developed by Lavielle and Moulines
(2000).12We find important shifts in the volatility of all three return se-
ries, which can be associated to particular events in these markets. In
the case of ethanol, we observe a break in the dynamics of ethanol
returns during mid-2006 (July 7), a period when refiners across all
states were effectively forced to eliminate MTBE from gasoline and eth-
anol was left as the sole alternative oxygenate. In the case of oil and
corn, we find a break in these series during mid-2008 (June 6 in corn
and September 19 in oil), a periodwhen the food crisis was feltmost se-
verely. Consequently, we divide our sample in two subperiods:
12 Lavielle and Moulines' (2000) test searches for multiple breaks over a maximum,
pre-defined number of potential segments, and uses a minimum penalized contrast
to identify the number of breakpoints. We obtain similar results when allowing for
two or three possible segments.
September 19, 1997 through June 30, 2006 and September 26, 2008
through October 28, 2011.

Tables A.2 and A.3 in the Supplementary Appendix present the full
results of the T-BEKK model for the corresponding sample periods
using the Schwarz criterion to determine the optimal number of
lags (one lag). As in our base results, the diagnostic tests for the stan-
dardized squared residuals (LB, LM and HM statistics) and the esti-
mated degrees of freedom parameters (5.8 and 10.5) support the
adequacy of the model specifications.

A comparison of the conditional mean equations across the two
sample periods does not reveal major changes in mean spillovers be-
tween energy and corn markets. During both periods, the conditional
mean returns in oil, ethanol and corn markets are basically only de-
pendent on their own past returns; oil and ethanol show a positive
dependence while corn exhibits a negative dependence. In more re-
cent years, however, corn returns also report mean-spillovers from oil
returns, suggesting a stronger role of crude oil as an input in corn pro-
duction at the mean level. This finding is similar to the results of Du et
al. (2011) who also found a higher correlation between crude oil and
corn prices after 2006. The dependence of ethanol returns on their
lagged returns appears, in turn, to have decreased in recent years.

In the case of the conditional variance dynamics, we observe strong
GARCH effects in both periods. Yet, while own-volatility spillovers seem
to have decreased in magnitude after 2008 in both ethanol and corn
markets, own-volatility persistence has increased in all three markets.
This implies that energy and corn markets are now deriving more of
their volatility persistence from within their own markets. Regarding
cross-volatility effects, the reported Wald tests indicate the presence
of cross effects during both periods. While the Wald tests for overall
spillover and persistence effects indicate that the cross effects have be-
come weaker after 2008, the non-causality in variance tests point out
that the ethanolmarket has becomemore directly exposed to past inno-
vations and variance from the other markets (corn) in recent years. Oil
and corn markets do not seem to be directly affected by the other mar-
kets during both sample periods, at least not at conventional statistical
levels. The cross-market dynamics, however, are better illustrated
through impulse–response functions, which comprise both direct and
indirect effects, and to which we now turn.

Figs. 5 and 6 show the simulated responses in the volatility of en-
ergy and corn markets to innovations originating in each market dur-
ing the two sample periods. The innovations are equivalent to a 1%
increase in the conditional volatility of the market where the innova-
tion first occurs, and the responses are measured as percentage devi-
ations from the initial conditional volatility in each market. Similar to
our full-sample results, we observe cross-volatility spillovers from
corn to ethanol markets during the two periods, but these spillovers
have become much stronger after 2008, which is in line with the in-
creasing dynamic correlation between these markets observed with
the DCC model. Similarly, an innovation in ethanol does not spill
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Table 3
T-BEKK model estimation results.

Coefficient Crude oil Ethanol Corn

(i = 1) (i = 2) (i = 3)

Conditional mean equation
γ0 0.285 −0.047 0.013

(0.146) (0.072) (0.118)
γ11i 0.158 0.021 0.028

(0.037) (0.016) (0.027)
γ12i −0.017 0.558 0.036

(0.043) (0.034) (0.037)
γ13i −0.040 −0.006 −0.108

(0.041) (0.021) (0.037)

Conditional variance–covariance equation
ci1 1.186 −0.545 −0.703

(0.164) (0.261) (0.247)
ci2 1.115 −0.596

(0.287) (0.445)
ci3 0.000

(0.041)
ai1 0.202 0.027 −0.037

(0.037) (0.032) (0.039)
ai2 0.007 0.651 0.288

(0.031) (0.087) (0.087)
ai3 0.005 −0.055 0.241

(0.026) (0.034) (0.046)
gi1 0.936 0.044 0.060

(0.013) (0.023) (0.022)
gi2 0.060 0.622 −0.153

(0.034) (0.129) (0.094)
gi3 0.009 0.050 0.925

(0.015) (0.038) (0.033)
ν 6.409

(0.861)

Wald joint test for all cross-volatility coefficients (H0: aij = gij = 0, ∀i ≠ j)
Chi-sq 46.360
p-Value 0.000

Wald test for non-causality in variance on each market (H0: aij = gij = 0, ∀j, i ≠ j)
Chi-sq 6.581 20.111 4.224
p-Value 0.160 0.000 0.377

Ljung–Box test for autocorrelation (H0: no autocorrelation in squared residuals)
LB (6) 7.169 5.230 4.126
p-Value 0.306 0.515 0.660
LB (12) 16.115 6.623 17.910
p-Value 0.186 0.881 0.118

Lagrange multiplier (LM) test for ARCH residuals (H0: no ARCH effects)
LM (6) 6.597 5.100 4.025
p-Value 0.360 0.531 0.673
LM (12) 13.000 6.855 16.895
p-Value 0.369 0.867 0.154

Hosking Multivariate Portmanteau test for cross-correlation (H0: no cross-correlation in
squared residuals)

HM (6) 44.149
p-value 0.165
HM (12) 91.800
p-value 0.427
Log likelihood −5750.1
SBIC 15.849
# observations 736

Note: Standard errors reported in parentheses. Number of lags determined according to
Schwarz's Bayesian information criterion (SBIC). v is the degrees of freedom parameter.
LB, LM and HM stand for the corresponding Ljung–Box, Lagrange Multiplier and Hosking
test statistics.
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over to other markets in both periods. For the crude oil market this is
not surprising at all since the share of ethanol in total fuel demand is
still very small. Therefore, ethanol price levels and volatility are not
expected to affect crude oil price volatility, regardless of the recent
growth in ethanol production. However, when segmenting our sam-
ple we do observe volatility spillovers from oil to both ethanol and
corn markets, particularly prior to 2006. This latter finding is
somewhat surprising and in contrast with the results from the DCC
that indicated a stronger correlation between crude oil and corn
after 2008. An explanation for these contrasting results could be the
positive and significant spillover effect of crude oil return levels on
corn return levels after 2008, which may have attenuated conditional
volatility spillovers. Another explanation is that the existence of
structural breaks in the series could be affecting the identification of
volatility spillovers in oil when using the full sample (see also Van
Dijk et al., 2005). Still, our results suggest that price volatility in agricul-
tural markets is not necessarily stimulated by stronger links between
agricultural and energy markets after the expansion of biofuels in the
United States.

6. Concluding remarks

This paper has examined the level of interdependence and volatility
transmission between energy and corn markets in the United States
using different MGARCH specifications. The main research question is
whether price volatility in oil and ethanol markets stimulates price vol-
atility in the corn market. Since corn serves as a major input in US



Table 4
DCC model estimation results.

Coefficient Crude oil Ethanol Corn

(i = 1) (i = 2) (i = 3)

Conditional mean equation
γ0 0.304 −0.036 0.032

(0.146) (0.072) (0.116)
γ11i 0.151 0.021 0.030

(0.037) (0.017) (0.027)
γ12i −0.005 0.562 0.038

(0.042) (0.036) (0.037)
γ13i −0.046 −0.004 −0.115

(0.041) (0.022) (0.037)

Conditional variance–covariance equation
ωi 1.246 2.115 1.358

(0.559) (0.724) (0.845)
αi 0.070 0.471 0.098

(0.021) (0.102) (0.042)
βi 0.879 0.311 0.812

(0.036) (0.138) (0.089)
α 0.017

(0.007)
β 0.973

(0.014)
ν 5.931

(0.723)

Wald joint test for adjustments coefficients (H0: α = β = 0)
Chi-sq 16658.400
p-Value 0.000

Ljung–Box test for autocorrelation (H0: no autocorrelation in squared residuals)
LB (6) 4.222 4.539 3.234
p-Value 0.647 0.604 0.779
LB (12) 7.239 6.040 15.900
p-Value 0.841 0.914 0.196

Lagrange multiplier (LM) test for ARCH residuals (H0: no ARCH effects)
LM (6) 3.360 4.551 2.994
p-Value 0.763 0.602 0.810
LM (12) 6.708 6.329 13.764
p-Value 0.876 0.899 0.316

Hosking Multivariate Portmanteau test for cross-correlation (H0: no cross-correlation in
squared residuals)

HM (6) 41.258
p-Value 0.252
HM (12) 77.854
p-Value 0.816
Log likelihood −5749.3
SBIC 15.731
# observations 736

Note: Standard errors reported in parentheses. Number of lags determined according to
Schwarz's Bayesian information criterion (SBIC). v is the degrees of freedom parameter.
LB, LM and HM stand for the corresponding Ljung–Box, Lagrange Multiplier and Hosking
test statistics.
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Fig. 4. Dynamic conditional correlations. Note: The dynamic conditional correlations
are derived from the DCC model estimation results. The solid line is the estimated con-
stant conditional correlation following Bollerslev (1990), with confidence bands of one
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ethanol production, increased demand in ethanol, e.g. due to rising oil
prices, may trigger additional demand for corn, leading to additional
price volatility in corn prices. This concern has been expressed fre-
quently by policy makers and international organizations (FAO-OECD,
2011). However, in this paper it is recognized that due to different func-
tions of ethanol (viz. as oxygenate and gasoline substitute) and because
of the nature of the biofuel sector itself (strong policy involvement and
potential blending wall) the strength of these interactions may vary,
which may weaken the potential effects of energy price volatility on
corn price volatility.

The results of the full sample T-BEKK specification do not provide
evidence of mean spillovers in price returns across energy and corn
markets. Additionally, these results indicate that there are no volatil-
ity spillovers from oil or ethanol to corn. Opposite, a shock in corn
price volatility leads to a short-run shock in ethanol price volatility.
Apparently, input costs of corn do affect production costs of ethanol,
which is reflected in this volatility spillover from corn to ethanol.

When segmenting our sample in two periods, the non-causality in
variance tests suggests that the ethanol market has become more di-
rectly exposed to past spillovers and persistence from other markets
in recent years. The impulse–response analysis, which comprises
both direct and indirect cross-effects, further confirm the presence
of volatility spillovers from corn to ethanol both prior to 2006 and
after 2008. We also observe some spillovers from oil to ethanol and
corn when segmenting our sample, especially prior to 2006.

The estimation outcomes of theDCCmodel, which allows for varying
correlations in volatility between commodities, show that the volatility
relations are not constant over time. Whereas, the correlation between
oil and ethanol price volatility has not changedmuch over time, the cor-
relation between crude oil and corn and, especially, between ethanol
and corn has increased after 2007. The latter can be explained from
the effect of corn price volatility on ethanol volatility, whereas the first
results may reflect the role of crude oil as an input in corn production.

Overall, we conclude that the often stated concern of increased
price volatility in agricultural markets due to biofuels is not supported
by our empirical evidence. This implies that modifying US biofuel pol-
icies is not effective in reducing agricultural price volatility. The
existing price volatility on agricultural markets can better be man-
aged in different ways, such as creating better market monitoring sys-
tems or through futures markets, which is also recognized in policy
reports (FAO-OECD, 2011).
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Although the volatility spillovers from corn to ethanol that were
found in this study are not surprising given the fact that US ethanol
production is largely corn-based, this does have major implications for
the US ethanol industry. Agricultural prices have been very volatile in
recent years and may continue to be so in the near future for various
reasons (Gilbert and Morgan, 2010). This implies that ethanol prices
will continue to exhibit some volatility and might even become more
volatile. Major events that disturb US corn production, such as the
2012 drought, will therefore also impact ethanol price volatility in the
US. A more diverse portfolio of feedstocks used in biofuel production
or a shift towards second-generation biofuels, if technically and eco-
nomically feasible, could help, in turn, to reduce price volatility in etha-
nol markets.
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