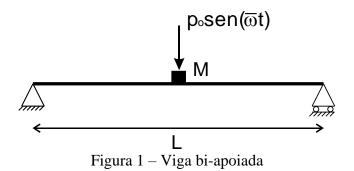
Departamento de Engenharia de Estruturas e Geotécnica

PEF 3401 – Mecânica das Estruturas II – Trabalho 2

Trabalho 2 - Análise dinâmica de uma viga

Informações gerais:


O trabalho deverá ser realizado em grupos de até três alunos. Não serão aceitos trabalhos individuais ou com grupos com mais de três alunos. Os parâmetros β , ξ e p_o devem ser considerados de acordo com o número de cada grupo. Caso haja necessidade de alterar o grupo, uma nova inscrição deverá ser feita na secretaria do PEF, a fim de obter-se um novo número de grupo. Um relatório sucinto deverá ser entregue no ambiente Moodle no formato ".pdf" até o dia 08/06/2017. Não serão aceitos trabalhos fora do prazo de entrega. O nome do arquivo deverá obedecer ao formato: "número do grupo-T2-PEF3401.pdf".

Enunciado:

O objeto de análise desse trabalho é a viga mostrada na Figura 1, que possui comprimento L e seção transversal quadrada com aresta b. O material da viga é um aço com massa específica ρ e módulo de elasticidade E, homogêneo em toda a seção transversal e ao longo do comprimento.

No meio-vão da viga existe uma máquina rotativa instalada. Durante a operação, o rotor da máquina opera com velocidade angular constante $\bar{\omega}$. A massa da máquina é M, e o desbalanceamento da máquina rotativa promove na viga um esforço oscilante com magnitude p_o e com a mesma frequência de rotação do rotor.

A única fonte de dissipação de energia no sistema é o amortecimento estrutural, representado globalmente por uma taxa de amortecimento ξ .

Dados numéricos:

L	4 m
ρ	8000 kg/m^3
Е	200 GPa
b	10 cm
ξ	consultar tabela no fim do enunciado
p_o	consultar tabela no fim do enunciado
β	consultar tabela no fim do enunciado
M	500 kg

Departamento de Engenharia de Estruturas e Geotécnica

PEF 3401 – Mecânica das Estruturas II – Trabalho 2

Pede-se:

Parte I: Análise modal utilizando o programa ADINA para obtenção das seis primeiras frequências naturais

- a) Realizar a análise modal da viga proposta sem considerar a existência da máquina rotativa instalada e assumindo que não há amortecimento. Compare o resultado obtido com a solução analítica do problema, disponível nas referências [1] e [2].
- b) Realizar a análise modal da viga proposta considerando também a massa da máquina. Compare o resultado obtido neste item com aquele obtido no item anterior e discuta eventuais diferenças.

Discutir também a densidade de malha utilizada por meio de um estudo de convergência de malha (fazer 3 malhas diferentes). Utilizar somente elementos de barra (viga).

Parte II: Análise transiente utilizando o programa ADINA.

Realizar no programa ADINA uma análise dinâmica transiente da estrutura. Assuma o modelo de amortecimento de Rayleigh com constantes $\alpha_R = 0$ e $\beta_R = 2\xi/\omega_1$, sendo ξ a taxa de amortecimento do primeiro modo e definida de acordo com o número do grupo e ω_1 a primeira frequência natural [rad/s] obtida na Parte I, item b.

Considerar a máquina rotativa no modelo por meio de uma massa concentrada no meio vão da viga. O único carregamento é proveniente do desbalanceamento da máquina. A amplitude do carregamento harmônico p_o é função do número do grupo. O parâmetro β também é função de cada grupo e é definido pela razão entre a frequência do carregamento a frequência natural do primeiro modo obtida na Parte I, item b.

Realizar a simulação por 2 segundos, com passo de integração no tempo de 0.001 segundos. Considere condições iniciais triviais. Apresentar e discutir a resposta do deslocamento do meiovão, em função do tempo.

Parte III: Estudo analítico e numérico com um modelo de um grau de liberdade

Propor um modelo de um grau de liberdade que represente o sistema estrutural viga + máquina. Para tanto, resolva os seguintes itens:

- a) Utilize o Teorema dos Esforços Virtuais para obtenção da rigidez relevante ao modelo.
- b) Proponha um valor de massa m^* a ser adotada no modelo de um grau de liberdade. Justifique sua escolha.
- c) Obtenha analiticamente, a solução em regime permanente. Compare a amplitude da resposta com a solução obtida na Parte II, discutindo eventuais discrepâncias.
- d) Utilizando um programa escolhido pelo grupo (ex: Octave), obtenha a série temporal de deslocamento. Exiba, em um mesmo gráfico, a série temporal obtida neste item e a série temporal obtida na Parte II e discuta eventuais discrepâncias.

Referências:

- [1] S. S. Rao. "Mechanical vibrations". Upper Saddle River, N.J. Pearson Prentice Hall: 2004
- [2] R. D. Blevins. "Formulas for natural frequency and mode shape". Krieger publications: 1984.

Departamento de Engenharia de Estruturas e Geotécnica

PEF 3401 – Mecânica das Estruturas II – Trabalho 2 Dados numéricos por grupos:

Grupo	p_o [N]	β	ξ
1	5000	0,85	0,02
2	5000	0,85	0,02
3	5000	0,85	0,02
4	5000	0,85	0,02
5	5000	0,85	0,02
6	5000	0,85	0,02
7	5000	0,85	0,02
8	5000	0,85	0,02
9	5000	0,85	0,02
10	5000	0,85	0,02
11	5500	0,85	0,02
12	5500	0,85	0,02
13	5500	0,85	0,02
14	5500	0,85	0,02
15	5500	0,85	0,02
16	5500	0,90	0,02
17	5500	0,90	0,02
18	5500	0,90	0,02
19	5500	0,90	0,02
20	5500	0,90	0,02
21	6000	0,90	0,02
22	6000	0,90	0,02
23	6000	0,90	0,02
24	6000	0,90	0,02
25	6000	0,90	0,02
26	6000	0,90	0,02
27	6000	0,90	0,02
28	6000	0,90	0,02
29	6000	0,90	0,02
30	6000	0,90	0,02
31	6500	0,95	0,02
32	6500	0,95	0,02
33	6500	0,95	0,02
34	6500	0,95	0,03
35	6500	0,95	0,03
36	6500	0,95	0,03
37	6500	0,95	0,03
38	6500	0,95	0,03
39	6500	0,95	0,03
40	6500	0,95	0,03
41	7000	0,95	0,03

Departamento de Engenharia de Estruturas e Geotécnica

PEF 3401 – Mecânica das Estruturas II – Trabalho 2

43 7000 0,95 0 44 7000 0,95 0 45 7000 0,95 0 46 7000 1,05 0 47 7000 1,05 0 48 7000 1,05 0 50 7000 1,05 0 51 7500 1,05 0 52 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0	0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
44 7000 0,95 0 45 7000 0,95 0 46 7000 1,05 0 47 7000 1,05 0 48 7000 1,05 0 50 7000 1,05 0 51 7500 1,05 0 52 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0	0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
45 7000 0,95 0 46 7000 1,05 0 47 7000 1,05 0 48 7000 1,05 0 49 7000 1,05 0 50 7000 1,05 0 51 7500 1,05 0 52 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0	0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
46 7000 1,05 0 47 7000 1,05 0 48 7000 1,05 0 49 7000 1,05 0 50 7000 1,05 0 51 7500 1,05 0 52 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0),03),03),03),03),03),03),03),03
47 7000 1,05 0 48 7000 1,05 0 49 7000 1,05 0 50 7000 1,05 0 51 7500 1,05 0 52 7500 1,05 0 53 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0	0,03 0,03 0,03 0,03 0,03 0,03 0,03 0,03
48 7000 1,05 0 49 7000 1,05 0 50 7000 1,05 0 51 7500 1,05 0 52 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0),03),03),03),03),03),03),03
49 7000 1,05 0 50 7000 1,05 0 51 7500 1,05 0 52 7500 1,05 0 53 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0),03),03),03),03),03),03
50 7000 1,05 0 51 7500 1,05 0 52 7500 1,05 0 53 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0),03),03),03),03),03
51 7500 1,05 0 52 7500 1,05 0 53 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0	0,03 0,03 0,03 0,03 0,03
52 7500 1,05 0 53 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0	0,03 0,03 0,03 0,03
53 7500 1,05 0 54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0),03),03),03
54 7500 1,05 0 55 7500 1,05 0 56 7500 1,05 0),03
55 7500 1,05 0 56 7500 1,05 0),03
56 7500 1,05 (
	03
57 7500 1.05 6	,,03
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7),03
58 7500 1,05 0),03
59 7500 1,05 0),03
60 7500 1,05 0),03
61 8000 1,05 (),03
62 8000 1,10 (),03
63 8000 1,10 0),03
64 8000 1,10 (),03
65 8000 1,10 0),03
66 8000 1,10 0	0,03
67 8000 1,10 0),05
68 8000 1,10 (),05
69 8000 1,10 0),05
70 8000 1,10 0),05
71 8500 1,10 0),05
72 8500 1,10 0),05
73 8500 1,10 0),05
74 8500 1,10 0),05
75 8500 1,10 0),05
76 8500 1,10 0),05
77 8500 1,15 0),05
78 8500 1,15 (),05
79 8500 1,15 (),05
80 8500 1,15 (),05
81 9000 1,15 (),05
82 9000 1,15 (),05
83 9000 1,15 0),05
84 9000 1,15 (),05
85 9000 1,15 0	

Departamento de Engenharia de Estruturas e Geotécnica

PEF 3401 – Mecânica das Estruturas II – Trabalho 2

86	9000	1,15	0,05
87	9000	1,15	0,05
88	9000	1,15	0,05
89	9000	1,15	0,05
90	9000	1,15	0,05
91	9500	1,15	0,05
92	9500	1,20	0,05
93	9500	1,20	0,05
94	9500	1,20	0,05
95	9500	1,20	0,05
96	9500	1,20	0,05
97	9500	1,20	0,05
98	9500	1,20	0,05
99	9500	1,20	0,05
100	9500	1,20	0,05