- 1. a) Mostre que $\left[\mathbb{R}, \frac{\mathbb{P}^2}{2m}\right] = \frac{i\hbar}{m}\mathbb{P}$
 - b) Calcule comutador [P, H]
- 2. Considere uma partícula em um potencial constante V(X) = -fX, onde f é uma constante positiva.
 - a) Escreva as equações de Ehrenfest para os valores médios de X e P.
 - b) Mostre que ΔP não depende do tempo.
 - c) Escreva equação de Schrödinger na representação $\{|p\rangle\}$
- 3. Refaça os itens a) e b) do exercício anterior para o potencial $V(X) = -kX^2$.
- 4. Considere um sistema físico arbitrário. Descrito pelo Hamiltoniano $H_0(t)$ e pelo operador evolução correspondente $U_0(t, t')$:

$$\int i\hbar \frac{\partial}{\partial t} U_0(t, t_0) = H_0(t) U_0(t)$$

$$U_0(t_0, t_0) = 1$$

Agora assuma que o sistema é perturbado de forma que o seu Hamiltoniano é descrito por:

$$H(t) = H_0(t) + W(t)$$

O vetor de estado do sistema de interação $|\psi_I(t)\rangle$ é definido a partir do vetor $|\psi_S(t)\rangle$ de Schrödinger por:

$$|\psi_I(t)\rangle = U_0^{\dagger}(t, t_0) |\psi_S(t)\rangle$$

a) Mostre que a evolução de $|\psi_I(t)\rangle$ é dada por:

$$i\hbar \frac{\partial}{\partial t} |\psi_I(t)\rangle = W_I(t) |\psi_I(t)\rangle$$

Onde $W_I(t) = U_0^{\dagger}(t, t_0)W(t)U_0(t, t_0).$

b) A equação diferencial acima pode ser escrita da seguinte forma:

$$|\psi_I(t)\rangle = |\psi_I(t_0)\rangle + \frac{1}{i\hbar} \int_{t_0}^t dt' W_I(t) |\psi_I(t')\rangle$$

Onde $|\psi_I(t_0)\rangle = |\psi_S(t_0)\rangle$

Resolvendo essa equação integral por interação, mostre que o ket $|\psi_I(t)\rangle$ pode ser expandido em séries de potência de W na forma:

$$|\psi_I(t)\rangle = \left\{1 + \frac{1}{i\hbar} \int_{t_0}^t dt'^{W_I}(t') + \frac{1}{(i\hbar)^2} \frac{1}{i\hbar} \int_{t_0}^t dt''^{W_I}(t'') + \cdots \right\} |\psi_I(t_0)\rangle$$

- 5. Considere uma partícula livre:
 - a) Mostre, utilizando o teorema de Ehrenfest, que $\langle X \rangle$ é uma função linear do tempo, o valor médio $\langle P \rangle$ permanecendo constante.
 - b) Escreva as equações do movimento para os valores médios $\langle X^2 \rangle$ e $\langle XP + PX \rangle$. Integre estas equações.
 - c) Mostre que, com uma escolha apropriada para a origem temporal, o desvio médio quadrático ΔX é dado por:

$$(\Delta X)^{2} = \frac{1}{m^{2}} (\Delta P)_{0}^{2} + (\Delta X)_{0}^{2}$$

Onde $(\Delta X)_0^2$ e $(\Delta P)_0^2$ são os desvios médios quadráticos no tempo inicial.