
A Hybrid GA-ANN Approach for Autonomous Robots
Topological Navigation

ABSTRACT
This paper proposes a hybrid approach using Genetic Algo-
rithm and Artificial Neural Networks for autonomous path
planning and motion control for mobile robots. A Topologi-
cal Navigation approach is adopted, using the environment
mapped as a graph. A Genetic Algorithm is used to gene-
rate and evolve a set of feasible actions, aiming to lead the
robot to the goal considering the shortest path. Each action
is a different reactive behavior designed for a specific en-
vironment feature such as corridors, turns or intersections.
Then, an Artificial Neural Network is trained to recognize
the different environment features, and the next behavior is
activated every time the ANN detects a transition. Expe-
riments were performed in Player/Stage robotics simulator
and obtained results showed this approach as a promising
way to plan and execute a path.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.2 [Artificial
Intelligence]: Robotics

General Terms
Algorithms, experimentation

Keywords
Genetic Algorithm, Robotics, Autonomous Navigation, Ar-
tificial Neural Networks

1. INTRODUCTION
Path planning and execution are very important tasks for

autonomous mobile robots. In this process, firstly it is neces-
sary to define the path from a source point to a destination
point, and then execute the control and navigation tasks de-
tailed by a set of intermediate goals. The navigation task

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

can be described by a set/sequence of behaviors, which in-
dicate the main actions to be performed in order to achieve
the final destination.

According to [1], designing a mathematical model for an
optimal or near-optimal planning and navigation control
strategy of a robot is a very complex task. Methods based
in heuristic optimization (e.g. A*, D*, visibility graph [2])
can provide good solutions to the robot path planning, but
algorithms like these require a precise localization of the
robot during all the path execution, a previously provided
and well defined map, and also need a selection of an efficient
method for controlling the robot’s navigation (control move-
ments along the planned path). Machine learning methods
have been used for this purpose as well as evolutionary al-
gorithms.

The present paper proposes the use of a genetic algorithm
(GA) to solve the path planning problem in mobile robotics.
Genetic algorithms are metaheuristics inspired by the fittest
survival principle that mimic processes of biological evolu-
tion to solve problems [3]. This principle states that indivi-
duals more suited to the environment have a greater proba-
bility to survive as well to reproduce themselves. [4]. Thus,
each individual is represented by a sequence of behaviors
which allows the robot to reach a goal point at the environ-
ment, and then the GA algorithm objective is to evolve a
set of individuals in order to find the best feasible sequence
of actions.

The proposed system is based on a topological naviga-
tion approach [5], in which the environment is mapped with
a graph representation. Each node is associated to one or
more reactive behaviors, and each reactive behavior is res-
ponsible to make the robot safely reach the next node in
this graph. Thus, the GA generates a suitable sequence of
reactive behaviors, setting an adequate behavior for each de-
cision point in this graph as, for example, intersections and
turns.

There are two main advantages of this approach. First,
the robot does not have prior knowledge about the envi-
ronment (internal representations or maps), discovering the
best path through the evolutionary process. Second, this
evolutionary process is carried on the graph representation
proposed that does not require a very detailed map, but only
a sketch with the main elements of the environment. A pre-
cise localization is also not required, since the system knows
its approximate position according to the current topologi-
cal node, and the reactive behaviors are able to make the
robot safely reach the next node. Sensorial data is used, so
the robot is able to properly react to dynamic elements and

avoid obstacles.
This paper is organized as follows: Section 2 describes

some related works, and section 3 describes the environment
representation adopted. In Section 4, the developed genetic
algorithm is explained and the experiments presented in Sec-
tion 5. The conclusion and future works are presented in
Section 6.

2. RELATED WORKS
Some previous works have already applied the genetic al-

gorithm to the path planning problem. The domain know-
ledge was aggregated to a GA for path planning in static
and dynamic environments of a mobile robot in [6]. The en-
vironment was represented by orderly numbered grids. The
chromosome represented a path, composed by a sequence of
grid numbers starting from the source and ending at the tar-
get position. The domain knowledge was used by specialized
operators, combining a local search technique to improve a
path. The evaluation considered feasible (collision free path)
and infeasible paths. The fitness function value was defined
as the sum of distances of each line segments and, if an in-
feasible path was generated, a penalty was added. The algo-
rithm was also used in dynamic environments. In this case,
if an obstacle was added to the map, a new path should be
found by the genetic algorithm. However, this work is un-
clear if sensors were used to perceive and avoid obstacles,
and also if they used any specific localization and naviga-
tion control methods. The proposed method was evaluated
in simulation and demonstrated effectiveness and efficiency.

In [7], it was developed a GA to path planning for local
obstacle avoidance of a mobile robot in static environments.
The objective was to minimize the length of the path and the
number of turns. The environment was modeled as a grid
sliced into rows and columns. The chromosome structure
was composed by four variables: path-flag, path-location,
path-direction and path-switch. The robot had two possible
movements: row-wise and column-rise. The path-flag vari-
able indicated the possible movements; the path-location
variable referred to robot position; the path-direction vari-
able indicated the direction the robot should turn to proceed
to the next node; and the path-switch variable allowed the
robot to switch back and forth between a row-wise and a
column-wise movement in a single path. The fitness value
considered the path length, the number of turns and the
collisions. According to the authors, the experiments showed
that the proposed algorithm works better than other algo-
rithms, but they did not explain how the robot navigates
through the environment when dealing with real world im-
precision and uncertainty.

In [8], an improved genetic algorithm for optimum path
planning for mobile robots navigation was proposed. To
generate the initial population, an obstacle avoidance algo-
rithm was used to generate the first population and another
algorithm was used to distinguish if the path was feasible
or infeasible during the genetic evolution. The environment
was represented by a numered grid model, in which each
numbered grid unit is a node. So, the path was a sequence
of nodes that is the individual representation. Single-point
random crossover operator was used to generate the new
individuals. Mutation operation was applied to a random
node of the chromosome. After the application of each ge-
netic operator, the distinguish algorithm was used to correct
the infeasible paths. A refinement operator was used to re-

duce the path distance based on the triangle principle. If
three nodes form a right triangle, the node with 90◦ to the
others is deleted. In the delete operator, if two nodes can
be connected without crossing any obstacles, the interme-
diate nodes between them can be deleted. The value fitness
function was the inverse of the total distance of the path.
The effectiveness of the proposed genetic algorithm was de-
monstrated in simulation and with a real robot. In the real
experiment, the navigation control relies on sensor readings.
Thus, the success of the navigation depends of the precision
of the sensor readings.

A genetic algorithm was also applied to the path planning
problem in dynamic environments by [9]. The environment
was represented by a ordely numbered grid model. A chro-
mosome was represented by a sequence of nodes for robot
navigation, with each node representing a numbered grid cell
in the environment. The initial population was generated
randomly, but it was repaired if the information encoded in
a chromosome allowed intersecting an obstacle. Single-point
crossover was used in two parents to generate two new in-
dividuals. In random mutation operator, a random bit-wise
binary complement operation or a random small change in a
gene was performed. The fitness function was defined as the
sum of distances between each node in a path. If there was
an obstacle in the direction of the robot, a penalty should
be added to the objective function value. The novelty of the
work in [9] was the mutation operator. Instead of randomly
choose one node to change, all the free nodes which do not
intersect an obstacle close to mutation node were evaluated.
The node was selected according to the fitness value of total
path. The authors said the algorithm was tested in dynamic
environments (environments which constantly change after
the robot start to move). However, it is not clear how the
robot can cope with these situations, without using the Ge-
netic Algorithm to recalculate the path. According to the
authors, the experiments showed that the proposed method
converges faster than other methods in literature.

For motion planning with multiple mobile robots, [10]
proposed a solution using master and slave evolutionary al-
gorithm in maze-like map. The slave algorithm evolutio-
nary was responsible to find the optimal path to each robot.
The master algorithm was concerned about overall optimal
paths. In the slave algorithm, the chromosome was represen-
ted as a sequence of integer values. Each integer represen-
ted a robot movement which could be left, right, up, down.
Scattered crossover and uniform mutation were the opera-
tors used in the algorithm. The fitness was calculated as the
total length of the path. If the robot did not reach the goal,
a penalty was added proportionally to the distance between
the last point reached by the robot and the current goal
location. A factor which referred to the collisions among
robots was added to the fitness function aiming to achieve
the global solution. In the master algorithm, the individual
was a set of pointers that points to some individual of the
slave algorithm. Similar to the slave algorithm, scattered
crossover was used. In the mutation, an existing pointer was
deleted and the new ones pointed to some other individual
in the slave population. The fitness value was defined by the
average traveling time of each robot. A penalty was added
if the robot did not reach the goal. The proposed method
was experimented in several scenarios, which in each of them
the algorithm found a collision free path for all robots from
the source to the goal. The simulation was done using Java

Applet based GUI, but the authors do not explain how the
robot can deal with imprecision or use sensors.

The grid map representation was adopted in these pre-
sented works and refers to metric maps, demanding a pre-
cise localization and odometry systems. In order to reach the
next node, the robot should follow a very accurate sequence
of movements, implying that a motion planning is also ne-
cessary. However, motion control is not discussed in these
papers, the path generation is obtained based on static maps
(dynamic maps usually need to re-execute the path planning
algorithm). Also, they can not prove robustness in avoiding
dynamic elements since they did not present a sensorial sys-
tem able to recognize these elements and react, with a local
motion control or autonomously deciding to replan the path
whilst navigating. So, the hybrid approach proposed in this
paper aims to overcome these limitations, using a different
environment representation and also a different individual
representation from the presented related works, resulting
in a complete system for both path planning and motion
control.

The navigation process proposed in this paper is based on
the Topological Navigation System proposed in [5]. In that
system, the environment was represented by a topological
map, a graph with each node related to a specific spot in
the environment with particular structural features (corri-
dors, turns, intersections). Any path in this map could be
represented by a sequence of these nodes, resulting in a Fi-
nite State Machine [11]. Then, an Artificial Neural Network
was trained to recognize the current node using the robot
sensors. For each node, there was a set of possible local reac-
tive behaviors which lead to the next expected node/state,
also avoiding obstacles. Table 1 shows an example of states
and the matching actions. It is also important to mention
that in [5] path generation and the assignment of adequate
behaviors for each state was not made automatically, being
performed by a human operator. Thus, this work extends
[5] work since the GA automatically generates a feasible se-
quence of actions. In this case, a genetic algorithm is in-
troduced to set the best feasible sequence of actions found
during the evolutionary process which can lead the robot
from an initial to a goal position at the environment. The
GA evolution happens over a graph representation of the
environment that allows accelarating the evolutionary pro-
cess.

Table 1: States and possible actions for each one
State Related Actions

Straight go forward
Right turn right
Left turn left

Intersection go forward, turn right and turn left
Bifurcation turn right and turn left

The main difference between the proposed approach and
the related works which used GA for path planning, is that
it does not generate a precise sequence of points to be vi-
sited, but a feasible sequence of local behaviors which lead
to the goal. This way, accurate localization is not necessary
and the robot does not need to know the environment map.
When the ANN detects a state transition (context change),
the next reactive behavior is activated, allowing the robot to
safely navigate through this topological node and reach the

next expected spot. This method can be easily extended to
deal with dynamic obstacle avoidance, since reactive beha-
viors can be robust to dynamic elements which can possi-
bly appear. The environment topological representation and
navigation approach are described in the next section.

3. TOPOLOGICAL ENVIRONMENT REP-
RESENTATION AND NAVIGATION CON-
TROL

In the genetic algorithm, it is needed to evaluate all in-
dividuals during the evolutionary process. Considering this
robotics navigation application, this evaluation means that
the robot has to navigate on the map following the path and
successfully reach the goal. Using a metric map in a robotics
simulator (as Player/Stage [12]) could make the evolutionary
process very slow, since a continuous search space would be
used for optimization. Thus, the topological approach pro-
posed in [5] was adopted, restricting the search space with
the use of a graph to model the environment during the
genetic evolution.

In [5] topological approach, the nodes are used to repre-
sent strategic points with particular structural features. One
edge between two nodes indicates that these points are ad-
jacent in the real environment, being possible to reach the
next node with a reactive control. This way, a path between
an initial point and the goal is merely a sequence of nodes,
working as a Finite State Machine. An Artificial Neural
Network is trained to recognize the different possible nodes,
using robot’s sensors data as input. Each node is related
to an adequate and particular action (or a set of possible
actions) which lead the robot to the next node. So, naviga-
tion step is performed using the ANN to detect the current
node/state and performing an adequate reactive behavior
according to current and next states. In [5], autonomous
path planning and behavior selection was not implemented,
motivating the study proposed in this work. Figures 1 and
2 illustrate a map and its respective graph representation.

Figure 1: A map example. S is the start position of
the robot and G is the goal.

In this example, the possible actions to be performed from
each current node are turn right, turn left, go forward, turn
around and go straight. The action turn around is acti-
vated when the robot is going forward and an obstacle blocks
the way. The difference between actions go forward and go
straight is that the first is used in a cross and the second is
used in a corridor.

Each node has a list of four adjacent nodes: north, south,

Figure 2: The correspondent graph from Figure 1.

east and west. Accordingly to the direction assumed by
the robot and the current action, the position is changed to
one of the adjacent nodes. For example, in Figure 2, if the
current position is node 13 and the robot came from west
direction, the neighbours nodes are: north (node 14), south
(node 12), east (node 10) and west (node 17). Furthemore,
each node is related to an approximate discrete position in
the map that is used to calculate the fitness value. The
fitness function and other GA parameters are explained in
the next section.

4. GENETIC ALGORITHM
The proposed genetic algorithm (AG) generates a sequence

of actions that allows the robot to accomplish the navigation
to its destination target point. The objective is to automa-
tically provide the sequence of reactive behaviors to follow
a path using topological navigation approach. In most of
works found in the literature, the chromosome is modeled
as a sequence of exact points that the robot has to visit. In
this paper, the chromosome is defined as a sequence of inte-
gers, each integer representing a reactive behavior that can
be performed by the robot. An example of the chromosome
is shown in Figure 3. The possible actions to be performed
will be enumerate as go forward (0), turn left (1), turn right
(2), turn around (3) and go straight (4).

For example, let’s assume the initial and final positions
indicated in Figure 1, the robot coming from west and exe-
cuting the actions defined by Figure 3. According to this
chromosome, the robot should perform the actions: turn left,
go straight, go foward, go straight, turn right, go straight, go
forward, go straight, turn left and go straight. In the corres-
pondent graph illustrated by Figure 2, the following nodes
will be visited: 3, 4, 5, 8, 11, 12, 13, 14, 15, 18 and 23. It can
be observed that the chromosome holds 20 possible actions
to be applied, but the goal was reached with only 10 actions.
In this case, the remaining genes are not considered.

Figure 3: An example of the individual representa-
tion. Each gene represents a code for an action.

The initial population is generated filling randomly the
genes of each chromosome with possible integer values for
the related actions. Each chromosome is evaluated perfor-
ming a robot navigation through the graph representation.
At this step, a repair operator is executed. If an action
indicated by the gene is not possible to be applied during
the graph navigation, the repair operator replaces it by a
new one, according to the possible actions to be applied at
this node in the graph. For example, if the robot is coming
from south to node 5, in Figure 2, and the next gene action
to be applied is 1, the turn left action should be executed.
However, this action is not possible for this node and the
action (integer value) in this gene must be replaced. There
are two possible actions for this node, 0 or 2, which is ran-
domly chosen by the repair operator and fixed as new gene
value.

The fitness function is based on the length of the path exe-
cuted by the robot and on the distance from its final position
to the goal, according to the graph representation. The dis-
tance travelled is the sum of euclidian distances between
each pair of nodes, Vi and Vj , from the set of nodes included
in the path (Equation 1). When the action turn around (3)
is chosen, the distance between the nodes is summed twice,
once that the robot entried in a blocked corridor. If the goal
is reached, this sum is divided by a constant α. If the goal
is not reached, the euclidian distance between the current
node and the goal node is added to the sum, multiplied by
a constant β. Equation 2 is the fitness function explained,
where f is the fitness value, α and β are constant values, Va

is the current node, Vg is the goal node and d(Va, Vg) is the
euclidian distance between Va and Vg nodes.

sum =
∑

d(Vi, Vj) (1)

f =

{
sum/α if the goal is reached
sum+ β ∗ d(Va, Vg) if the goal is not reached

(2)
The population at each generation t is formed by p% of

the best individuals from the population at generation t−1.
The other (1 − p)% are determined by crossover and mu-
tation. The tournment between two individuals selects two
parents from population at generation t− 1. Thus, the uni-
form crossover operator is applied over these parents genera-
ting a new individual. Mutation can be applied to the new
individual following the mutation rate. If the mutation rate
is satisfied for one individual, one gene randomly selected is
changed, that means select randomly another action (integer
value) to be performed. Finally, the fitness values of the new
individual is determined. The new individual is inserted in
the population, except if its fitness value is equal than one
of its parents. In this case, the reproduction process is re-
peated. The evolutionary process evolves until one of the
two stop criteria has been satisfied: if the best individual
found so far is not improved by a number of generations or
if the maximum number of generation is reached.

After the evolution happens over the graph representa-
tion, the best solution found is executed using the simulator
Player/Stage. At this point, the ANN proposed in [5] is then
used to detect changes in the current state, activating ac-
tions encoded in the GA best solution. In the next section is
presented the experimental evaluation and results analysis.

5. EXPERIMENTS AND RESULTS
To evaluate the performance of the GA, experiments were

carried out in the map represented in Figure 4, wich is si-
milar to map used in [10]. In theses experiments, the start
and goal nodes are indicated in the figure by S and G1,
respectively. The values α = 2 and β = 2 were adopted
for the fitness function and the individual length was set as
60 genes. The stopping criteria are 10 generations without
update the best fitness or to reach a maximum number of
50 generations. These values were empirically determined
based on previous tests.

Figure 4: The map used in the experiments. S is
the start position of the robot and G1, G2, G3 and
G4 are the goals.

However, the results found evaluating some other para-
meters of the proposed GA are reported next. The first one
is related to the population size as describe in Table 2. The
columns represent the population size, the number of gener-
ations spent, the fitness value of the best individual and the
run time in miliseconds to convergence, respectively. These
results are average values followed by standard deviations
found after 100 runs of the GA. In these experiments, mu-
tation rate was fixed as 0.1 and a elistism strategy named
E1/2 was adopted. This elitism means that 50% of the best
individuals in the population at generation t will be in gen-
eration t+ 1.

The population size evaluated are 25, 50, 100, 150, 300,
500, 1000. In Table 2, it can be noted that the number the
generations decreases and the best fitness gets better as the
population size increases, although the run time increases.
The algorithm found the same best final solution in all exe-
cutions with 300, 500 and 1000 individuals. However, the
population size of 300 individuals presents the best compro-
mise between solution value and computational time. Thus,
this population size was set to evaluate different mutation
rates.

The different values applied to evaluate mutation were
0.05, 0.1, 0.15 and 0.2 (Table 3). It is possible to observe
that the mutation rate had a little interference in the results.
The lower value of 0.05% has the best results with faster
convergence.

Using the population size of 300 and mutation rate of 0.05,
the last analysis of the GA parameters is about the propor-

Table 2: Analysis of population size. Here, the mu-
tation rate is 0.1.

Population
size

Generations
to converge Best fitness Time (miliseconds)

25 15.91 ± 5.28 53.86 ± 7.25 3700 ± 4852.36
50 15.59 ± 5.44 50.20 ± 2.45 7800 ± 5427.20
100 15.42 ± 4.92 49.10 ± 1.57 15200 ± 6273.24
150 14.77 ± 5.13 48.63 ± 0.76 22400 ± 8302.37
200 13.75 ± 3.70 48.68 ± 0.83 27200 ± 7664.69
250 12.88 ± 3.07 48.50 ± 0.25 32100 ± 8444.11
300 12.53 ± 2.50 48.48 37700 ± 8391.31
500 11.54 ± 2.23 48.48 58100 ± 12366.05
1000 10.38 ± 0.80 48.48 112500 ± 10187.63

Table 3: Analysis of mutation rate.
Mutation
rate

Generations
to converge Best fitness Time (miliseconds)

0.05 12.44 ± 2.72 48.48 37100 ± 8444.11
0.1 12.53 ± 2.5 48.48 37700 ± 8391.31
0.15 12.88 ± 2.87 48.50 ± 0.25 38300 ± 9107.11
0.2 12.64 ± 2.79 48.52 ± 0.39 38200 ± 9574.80

tion of individuals maintained to the next generation during
the evolutionary process. The elitism strategies evaluated
were named as E0, E1, E1/3 and E1/2. The strategy E0

means to update the whole population with new individuals,
while E1 keeps only the best individual from the previous
population. The strategies E1/2and E1/3 keep, respectively,
one half and one third of the best individuals from previous
population. Table 4 shows the results achieved.

Table 4: Analysis of elitism proportion rate.
Elitism
proportion
rate

Generations
to converge Best fitness Time (miliseconds)

E0 47.49 ± 7.44 55.67 ± 4.77 247100 ± 38828.68
E1 10.98 ± 1.34 48.48 62300 ± 7895.15
E1/3 11.75 ± 1.92 48.48 47500 ± 8918.82

E1/2 12.44 ± 2.72 48.48 37100 ± 8444.11

When the best solution was discarded from a generation
to the next (E0), the convergence became slow and the ma-
ximum number of generations was almost reached. If elitism
is introduced, the best solution was found in all tests without
relevant difference among the strategies E0, E1/3, and E1/2.
In this case, strategy E1 returns the best solution faster than
others.

As mentioned in Section4, a repair operator was proposed
to be applied when the individual is evaluted. In order to
verify the impact of this operator, the genetic algorithm was
executed also without this operator. In this experiment, the
genetic algorithm was set with population size of 300 indi-
viduals, mutation rate value 0.05 and elitism strategy E1.
The results are presented in Table 5. The method returned
the same value in all executions, spending more time than
using the repair operator. Furthemore, the method with
repair operator returned a better solution value. The best
solution found is the one illustrated in Figure 4, where the
black circle indicates the end of the path.

Table 6 presents the results found for all goals ilustrated
in Figure 4. The proposed method takes almost the same
computational time and number of generations for the diffe-
rent goals and always finds the optimal solution. This re-

Table 5: Analysis of the impact of repair operator.
Repair
operator

Generations
to converge Best fitness Time (miliseconds)

No 30.58 ± 0.50 63.64 275200 ± 46176.65
Yes 10.98 ± 1.34 48.48 62300 ± 7895.15

sults shows the effectiveness and efficiency of the proposed
approach to solve this problem.

Table 6: Results of the experiments with different
goals.

Goal
Generations
to converge Best fitness Time (miliseconds)

1 10.98 ± 1.34 48.48 62300 ± 7895.15
2 10 31.72 53600 ± 4824.18
3 10.01 ± 0.1 44.35 52900 ± 4776.84
4 11.18 ± 1.35 57.65 62800 ± 8297.50

A full navigation test was performed applying the pro-
posed method to the maze shaped map represented in Fi-
gure 4, where the start and goal are indicated in the figure
by S and G1, respectively. This experiment was performed
in Player/Stage simulator, using a simulated Pioneer P3-AT
robot with a 180◦ SICK Lidar sensor. The ANN proposed
in [5] was trained to recognize seven possible states: corri-
dor, crossing, left turn, right turn, right fork, left fork and
T-shaped bifurcation. The ANN training database was col-
lected in a different map with similar structural features in
order to evaluate the ANN robustness and generalization ca-
pability. Five reactive behaviors were modeled according to
actions defined enumerated from 0 to 4 in Section 4. In cor-
ridors, a simple wall-following behavior was implemented;
in crossings, bifurcations and turns a wall-following behav-
ior was used to align the robot, and then applied a constant
speed and steering angle according to the action.

The graph representation was made as explained in section
3, where the GA evolves with 300 of population size, 0.05 of
mutation rate and elitism strategy E1 as already explained.
The resulting action sequence returned by the best indivi-
dual was: go straight, go straight, go forward, go straight,
turn right, go straight, turn right, go straight, go forward,
turn left, go straight, turn left, go straight, go forward, go
straight, turn left, go straight, turn right, go straight, go
forward, go straight, turn right, go straight, turn left, turn
left and go straight. The robot successfully performed this
actions sequence using the topological navigation approach
proposed in [5]. A video showing this navigation is available
in https://www.4shared.com/video/6PrFtgIQ/GA_ANN.html.

6. CONCLUSIONS AND FUTURE WORKS
The hybrid approach proposed in this paper was success-

fully applied to autonomously generate and follow a path in a
topological map, demonstrating the feasibility and efficiency
of this method. The robot autonomously reached the goal
with simple reactive behaviors, without knowing the envi-
ronment map or its precise localization. Complex mapping
and localization algorithms were not necessary, allowing the
implementation of this approach even in systems with limi-
ted computational resources. It is also important to high-
light that the robot no longer needs to know the path to be
followed as proposed in [5], since it is only necessary to acti-
vate the next reactive behavior generated by the GA when

a state transition is detected. Thus, the improvements to
[5] work can be seen as some of the main contributions of
this paper. The proposed system showed to be a promising
approach for autonomous path planning and mobile robots
motion control.

As future works, the proposed approach will be improved
to deal with dynamic environments. For this, a method for
building a dynamic graph will be proposed too. Furthemore,
a chromosome with dynamic length will be incorpored.

7. ACKNOWLEDGMENTS
The authors would like to thank CNPq for their support.

8. REFERENCES
[1] A. L. Nelson, G. J. Barlow, and L. Doitsidis, “Fitness

functions in evolutionary robotics: A survey and
analysis,” Robot. Auton. Syst., vol. 57, pp. 345–370,
Apr. 2009.

[2] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor,
W. Burgard, L. E. Kavraki, and S. Thrun, Principles
of Robot Motion: Theory, Algorithms, and
Implementations. Cambridge, MA: MIT Press, 2005.

[3] M. Mitchell, “Genetic algorithms: An overview,”
Complexity, vol. 1, no. 1, pp. 31–39, 1995.

[4] W. Atmar, “On the rules and nature of simulate
evolutionary programming,” Proc, of the First Ann.
Conf. On Evolutionary Programming, pp. 17–26, 1992.

[5] D. O. Sales, F. S. Osório, and D. F. Wolf, “Topological
autonomous navigation for mobile robots in indoor
environments using ann and fsm,” in I CBSEC:
Conferência Brasileira em Sistemas Embarcados
Cŕıticos, (São Carlos, Brasil), 2011.

[6] Y. Hu and S. X. Yang, “A knowledge based genetic
algorithm for path planning of a mobile robot,” in
ICRA’04, pp. 4350–4355, 2004.

[7] K. Sedighi, K. Ashenayi, T. Manikas, R. Wainwright,
and H.-M. Tai, “Autonomous local path planning for a
mobile robot using a genetic algorithm,” in
Evolutionary Computation, 2004. CEC2004. Congress
on, vol. 2, pp. 1338–1345 Vol.2, 2004.

[8] S. C. Yun, V. Ganapathy, and L. O. Chong,
“Improved genetic algorithms based optimum path
planning for mobile robot,” in Control Automation
Robotics Vision (ICARCV), 2010 11th International
Conference on, pp. 1565–1570, 2010.

[9] A. Tuncer and M. Yildirim, “Dynamic path planning
of mobile robots with improved genetic algorithm,”
Comput. Electr. Eng., vol. 38, pp. 1564–1572, Nov.
2012.

[10] R. Kala, “Multi-robot path planning using
co-evolutionary genetic programming.,” Expert Syst.
Appl., vol. 39, no. 3, pp. 3817–3831, 2012.

[11] J. E. Hopcroft, R. Motwani, and J. D. Ullman,
Introduction to Automata Theory, Languages, and
Computation (3rd Edition). Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2006.

[12] T. H. Collett, B. A. MacDonald, and B. P. Gerkey,
“Player 2.0: Toward a practical robot programming
framework,” in Proc. of the Australasian Conf. on
Robotics and Automation (ACRA), (Sydney,
Australia), dec 2005.

https://www.4shared.com/video/6PrFtgIQ/GA_ANN.html

	Introduction
	Related works
	Topological Environment Representation and Navigation Control
	Genetic Algorithm
	Experiments and Results
	Conclusions and Future Works
	Acknowledgments
	References

