Interação da Radiação Eletromagnética com a Matéria Parte 2

Paulo R. Costa

Revisando a aula da semana passada!

Coeficientes de atenuação

$$\int_{N=N_0}^{N_L} \frac{dN}{N} = -\int_{l=0}^{L} \mu dl$$

$$\ln(N_L) - \ln(N_0) = \ln\left(\frac{N_L}{N_0}\right) = -\mu L$$
Vale no caso ideal
(sem espalhamento)
ou se há espalhamento,
mas este não é contado em N_L

$$N_L = N_0 e^{-\mu L}$$

SUPONDO-SE VÁRIOS PROCESSOS DE INTERAÇÃO (ainda sem espalhamento)

$$\mu = \mu_1 + \mu_2 + \mu_3 + \cdots$$
Coeficiente de atenuação linear parcial

$$\frac{N_L}{N_0} = e^{-(\mu_1 + \mu_2 + \mu_3 + \cdots)L} \qquad N_L = N_0 \left(e^{-\mu_1 L} \right) \left(e^{-\mu_2 L} \right) \left(e^{-\mu_3 L} \right) \cdots$$

NÚMERO TOTAL
DE INTERÇÕES
POR TODOS OS
PROCESSOS
$$\Longrightarrow \Delta N = N_0 - N_L = N_0 - N_0 e^{-\mu L} = N_0 (1 - e^{-\mu L})$$
NÚMERO PARCIAL
DE INTERÇÕES
DEVIDO A UM
PROCESSO x
$$\Longrightarrow \Delta N_x = (N_0 - N_L) \frac{\mu_x}{\mu} = N_0 (1 - e^{-\mu L}) \frac{\mu_x}{\mu}$$
Fração de interações
pelo processo x

Secção de choque diferencial para interações de espalhamento

Espalhamentos elástico e inelástico

Fonte: Podgorsak, E.B - Radiation Physics for Medical Physicists, 2nd ed.

Espalhamento Inelástico Clássico (Thomson)

- Feixe de fótons (onda eletromagnética) passando perto de um elétron
 - Aceleração e irradiação de parte da energia
 - Secção de choque \rightarrow física clássica
 - Feixe não-polarizado
 - Campos $E_1 e E_2$
- Utilizando a eletrodinâmica clássica podese demonstrar que

$$\frac{d\sigma_0}{d\Omega} = \frac{r_0^2}{2} \left(1 + \cos^2\theta\right)$$

Fonte: Johns, H.E.; Cunninghan, J.R. – The Physics of Radiology. 1983 – Cap.5 e 6

Espalhamento coerente (ou elástico ou Rayleigh)

FIG. 2.3. Variation of the normalized form factor F/Z for coherent scattering with the momentum transfer parameter x. Values are shown for carbon (C), iron (Fe) and platinum (Pt) (data from Ref. [2.1]).

Espalhamento Compton

 Aplicando-se os princípios de conservação de momento e energia pode-se demonstrar que

$$E = hv \frac{\alpha(1 - \cos\theta)}{1 + \alpha(1 - \cos\theta)}$$

$$hv = \frac{hv}{1 + \alpha(1 - \cos\theta)}$$

$$hv = \frac{hv}{1 + \alpha(1 - \cos\theta)}$$

$$hv = \frac{hv}{1 + \alpha(1 - \cos\theta)}$$

$$hv = \frac{hv}{m_0c^2} = \frac{hv(\operatorname{em keV})}{511}$$

$$hv = \frac{hv}{1 + \alpha(1 - \cos\theta)}$$

Fonte: Johns, H.E.; Cunninghan, J.R. – The Physics of Radiology. 1983 – Cap.5 e 6

a

Espalhamento Compton

- Secção de choque para o espalhamento Compton
 - Equação de Klein-Nishina (1928) [cm² sr⁻¹/elétron]
 - Aplicação da teoria quântica relativística de Dirac (1927)

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{r_e^2}{2} \frac{1 + \cos^2\theta}{\left[1 + \alpha(1 - \cos\theta)\right]^2} \left\{ 1 + \frac{\alpha^2(1 - \cos\theta)^2}{\left(1 + \cos^2\theta\right)\left[1 + \alpha(1 - \cos\theta)\right]} \right\}$$
$$\frac{\alpha \to 0}{h\nu' \approx h\nu}$$
$$\frac{\theta \to 0}{h\nu' \approx h\nu}$$
$$\frac{d\sigma}{d\Omega} \to \left(\frac{d\sigma}{d\Omega}\right)_{Th} \to \frac{r_e^2}{2}(1 + \cos^2\theta) \qquad \left(\frac{d\sigma}{d\Omega}\right) \to r_e^2$$

- Em materiais de baixo Z pode ocorrer emissão de elétrons Auger
- Compete com a emissão de raios X característicos

- Probabilidade de ocorrência
 - Não há expressão analítica para a seção de choque
 - Como
 - Cada átomo tem Z elétrons
 - Número de elétrons/grama é ± independente de Z

 $\tau \propto \frac{Z^n}{(h\nu)^{3,5}} \quad 4 \le n \le 5$

- Exemplo
 - Para uma dada energia
 - Cálcio: Z=20
 - Iodo: Z=53
 - Probabilidade: (53/20)³ = 18,6
 - A probabilidade de interação fotoelétrica com o iodo é 18,6 vezes maior que com o cálcio em uma mesma energia

$a^{\mathcal{T}} \xrightarrow{\mathbf{Forte dependência com}} onúmero atômico e com a energia incidente$

- Descontinuidades nas curvas
 - Aumento da probabilidade de absorção nas energias correspondentes às energias de ligação dos elétrons
 - Mais pronunciada → borda K
 - Responsável por cerca de 4/5 dos eventos fotoelétricos em átomos de Z alto
 - Efeito quase ressonante entre a energia do fóton e a energia de ligação do elétron
 - Aplicação
 - Contraste radiográfico

- Responsável pelo contraste nas imagens
 - Mais intenso em baixas energias
 - Se dobramos a energia incidente, a probabilidade de ocorrência cai ~8 vezes → (1/2)³ = 1/8
 - Efeito da interação com elétrons da camada-K
 - Tecido mole (H,C,N,O)
 - □ < 1keV
 - Meios de contraste
 - □ I (Z=53) → 34 keV
 - □ Ba (Z=56) → 37 keV

