LISTA DE PROBLEMAS 2

- **1-** Calcule a freqüência de luz emitida por uma transição eletrônica da sexta para a segunda órbita do átomo de hidrogênio. Em que região do espectro ocorre esta luz?
- **2-** O níquel possui a configuração eletrônica [Ar]3d⁸4s². Por que a configuração do próximo elemento na tabela, o cobre, possui a configuração [Ar]3d¹⁰4s?.
- 3- Imagine que o núcleo de um átomo de H esteja localizado na origem (o zero) de um sistema x, y, z. (a) Admita que, à distância d, a probabilidade de se encontrar o elétron 1s é $1,0.10^{-2}$ em x=d. A probabilidade de se encontrar o elétron em y=d é maior, menor ou igual a $1,0.10^{-2}$? (b) A probabilidade de se encontrar o elétron $2p_x$ é $1,0.10^{-3}$ em x=d. A probabilidade de se encontrar o elétron em y=d é maior, menor ou igual a $1,0.10^{-2}$?
- **4-** O manganês participa de diversos processos biológicos. Bactérias armazenadoras de manganês, por exemplo, são conhecidas há muito tempo. (a) Dê a configuração eletrônica deste elemento usando a notação de gás nobre e o diagrama simplificado de caixa de orbitais. (b) Com o diagrama simplificado de caixas de orbitais para o íon +2, mostre os elétrons que estão além dos do gás nobre precedente. (c) Este íon +2 é paramagnético? (d) Quantos elétrons desemparelhados existem no íon Mn²⁺?
- 5- Explique resumidamente a razão de o conjunto seguinte não ser um conjunto possível de números quânticos de um elétron num átomo. Em cada caso, altere o valor incorreto (ou os valores incorretos) de modo que o conjunto seja válido.

(a)
$$n = 4$$
; $l = 2$; $m_l = 0$; $m_s = 0$

(b)
$$n = 3$$
; $l = 1$; $m_l = -3$; $m_s = -1/2$

(c)
$$n = 3$$
, $l = 3$, $m_l = -1$, $m_s = +1/2$

- **6-** As energias de ionização de Li, Be e C são 5.4, 9.3 e 11.3 eV. Qual a sua predição para as energias de ionização de B e N?
- 7- Arrange as espécies em cada grupo em ordem crescente de potencial de ionização, e em cada caso, explique a razão para a seqüência: (a) K⁺, Ar, Cl⁻ (b) Fe, Fe²⁺, Fe³⁺ (c) Na, Mg, Al (d) K, Ca, Sc (e) N, O, F (f) C, N, O (g) Cu, Ag, Au (h) Be, B, C (i) K, Rb, Cs
- **8-** Quais dentre os íons seguintes têm existência pouco provável: Cs⁺, In⁴⁺, Fe⁶⁺, Te²⁻, Sn⁵⁺ e I⁻? Por que razão?

- **9-** Compare os elementos Na, B, Al e C em relação às seguintes propriedades: (a) Qual tem maior raio atômico? (b) Qual tem a afinidade ao elétron mais positiva? (c) Como é a seqüência dos elementos na ordem crescente das energias de ionização?
- 10- De que forma a variação periódica de eletronegatividade dos elementos difere da variação periódica de potenciais de ionização? E faça uma distinção entre a eletronegatividade e afinidade eletrônica.
- 11- Coloque os compostos seguintes em ordem crescente de energia da rede (do menos negativo para o mais negativo): LiI, NaF, CaO e RbI.
- 12- Dê as estruturas de Lewis das seguintes moléculas: (a) CHCl₂F, um dos muitos clorofluorcarbonos (b) ácido acético, CH₃CO₂H (c) acetonitrila, CH₃CN (d) metanol, CH₃OH
- 13- Compare os comprimentos da ligação nitrogênio-oxigênio no NO₂⁺, no NO₂⁻ e no NO₃⁻. Em que íon a ligação é mais comprida? Em que íon a ligação é mais curta? Explique resumidamente.
- **14-** Estime a energia da ligação C-H no metano, CH₄. A entalpia de formação do metano é de 17.9 kcal/mol; a energia de ligação no hidrogênio é de 104.2 kcal/mol; e a entalpia de sublimação do carbono é de 171.7 kcal/mol. Ilustre os cálculos através de um diagrama de entalpia.
- **15-** Determine, em cada uma das moléculas ou íons seguintes, a carga formal em cada átomo: (a) NO₂⁺ (b) NO₂⁻ (c) NF₃ (d) HNO₃
- 16- O óxido de dinitrogênio, N_2O , tem três estruturas de ressonância possíveis. (a) Desenhe as três estruturas. (b) Calcule a carga formal de cada átomo em cada estrutura de ressonância. (c) Com base nas cargas formais e na eletronegatividade, diga qual a estrutura de ressonância que é mais razoável.
- 17- Dê a estrutura de Lewis das seguintes moléculas ou íons. Descreva a geometria de pares de elétrons e das moléculas. (a) ClF₂⁻ (b) ClF₃ (c) ClF₄⁻ (d) ClF₅
- **18-** Dê os valores aproximados dos ângulos indicados.
- (a) ângulos F-Se-F no SeF₄.
- (b) ângulos das ligações O-S-F e F-S-F no OSF₄.

- (c) ângulos F-Br-F no BrF₅.
- (d) ângulos F-P-F no PF₆.
- 19- O ângulo de ligação em SnCl₂ é próximo de 120°, mas o ângulo em I₃- é de 180°. Explique.
- **20-** Dê a estrutura de Lewis e as geometrias dos pares de elétrons e da molécula para as moléculas e íons seguintes. Identifique a hibridização do átomo central. (a) SeF_6 (b) SeF_4 (c) ICl_2 (d) XeF_4 .
- 21- Os dois grupos - CH_2 em C_2H_4 não se rotacionam livremente em torno da ligação entre elas, embora os dois grupos - CH_3 em C_2H_6 rotacionam-se em torno da ligação C-C. Por quê?
- **22-** Descreva a promoção (do estado fundamental) e os orbitais híbridos em (a) cada átomo de carbono no acetileno, HC≡CH (b)SF₆ (c)ICl₃
- 23- Qual a hibridização do átomo de carbono no fosgênio, Cl_2CO ? Dê a descrição completa das ligações σ e π nesta molécula.
- **24-** O carbeto de cálcio, CaC_2 , tem o íon acetileto, C_2^{2-} . Desenhe o diagrama de níveis de energia dos orbitais moleculares deste íon. Quantas ligações σ e π tem este íon? Qual a ordem da ligação carbono-carbono? Como se modifica esta ordem quando se adicionam elétrons ao C_2 para formar C_2^{2-} ? Este íon é paramagnético?
- **25-** Quais são as ordens de ligação para CN⁻, CN, e CN⁺? Quais destas espécies deveriam ter o menor comprimento de ligação?