
Transistor Bipolar de Junção TBJ

Cap. 4 Sedra/Smith Cap. 8 Boylestad Cap. 10 Malvino

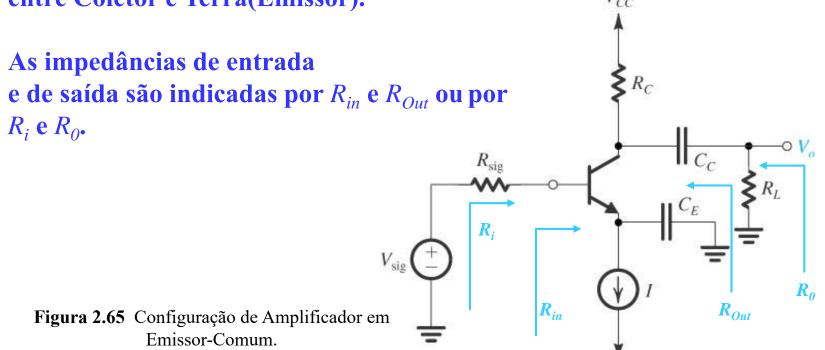
Amplificador EC

Notas de Aula SEL 313 Circuitos Eletrônicos 1 Parte 6

1º Sem/2017 Prof. Manoel

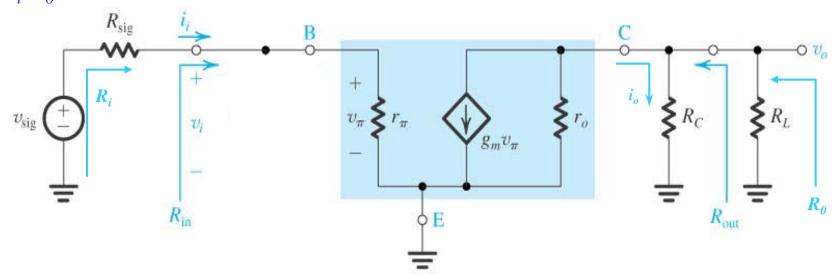
Análise de Amplificadores Básicos

Amplificador de estágios simples : 1 TBJ por amplificador.


Objetivos : $\begin{cases} \text{Impedância de Entrada} & R_i & (Z_i) \\ \text{Impedância de Saída} & R_0 & (Z_0) \\ \text{Ganho de Tensão} & A_{\nu} \\ \text{Ganho de Corrente} & A_i \\ \text{Resposta em Frequência} & (\Rightarrow \text{Circuitos Eletrônicos 2}) \end{cases}$

Procedimentos : Modelos Pequenos Sinais e Análise de Circuitos Elétricos CA

Amplificador Emissor-Comum


Esta configuração já foi estudada em vários exemplos. A seguir é mostrada uma configuração com polarização por fonte de corrente CC no emissor. Os capacitores são considerados de capacitância infinita.

O capacitor C_E conecta portanto o emissor ao Terra para qualquer sinal CA. O sinal da fonte é aplicado entre a Base e Terra(Emissor) e é retirado entre Coletor e Terra(Emissor). V_{cc}

Análise do caso Emissor-Comum

Para o circuito em questão o equivalente modelo e disposição para pequenos sinais é tal como a seguir. Aqui usou-se v_{π} para v_{be} e R_{in}/R_{out} para R_i/R_{o} .

Figura 2.66 Circuito equivalente da Configuração de Amplificador em Emissor-Comum para análise CA.

Neste caso, o ganho de tensão será obtido em relação a v_s , portanto incluindo a resistência interna da fonte. OBS. A fonte v_s e R_s podem ser o equivalente de Thévenin de um estágio amplificador anterior, com saída v_s e impedância de saída R_s (as quais se tornam entrada deste estágio).

Ganho de Tensão

Pela inspeção do circuito, observa-se que v_{π} ou (v_{be}) é uma parcela da tensão da fonte CA no divisor resistivo $(R_S + r_{\pi})$.

$$v_{\pi} = \frac{r_{\pi}}{R_{s} + r_{\pi}} v_{s} \tag{2.44}$$

No circuito a resistência R_C é a única carga do amplificador, embora pudesse haver uma carga R_L conectada ao coletor através do capacitor C_C , portanto:

$$v_0 = -(g_m v_\pi) (R_C // r_0) \qquad \Rightarrow \qquad A_{v\pi} = \frac{v_0}{v_\pi} = -g_m (R_C // r_0)$$
 (2.45)

Usando v_{π} de (2.45), e lembrando que $r_{\pi} = \beta/g_m$, chega-se ao ganho de tensão da fonte $v_S(t)$ para o coletor saída $v_0(t)$:

$$A_{vs} = \frac{v_0}{v_s} = -(g_m) \left(R_C // r_0 \right) \frac{r_\pi}{R_s + r_\pi} = \frac{-\beta \left(R_C // r_0 \right)}{R_s + r_\pi}$$
 (2.46)

Se a fonte ou o estágio anterior tiver $R_s << r_\pi$, como desejável, então A_v será independente de β :

$$A_{vs} \cong \frac{v_0}{v_s} = -(g_m)(R_C // r_0)$$
 (2.47)

Ganho de Corrente

Observando-se que a corrente de carga é uma parcela fonte de corrente no coletor através do divisor de corrente $(r_0//R_C)$, chega-se a :

$$A_{i} = \frac{i_{0}}{i_{i}} = \frac{i_{0}}{i_{b}} = \frac{-(g_{m} v_{\pi}) \cdot \frac{r_{0}}{(R_{C} + r_{0})}}{v_{\pi}/r_{\pi}}$$

$$= -\beta \frac{r_{0}}{R_{C} + r_{0}}$$
(2.48)

Impedâncias de Entrada e de Saída

Por inspeção direta do circuito, obtém-se:

$$R_{in} = r_{\pi} \tag{2.49}$$

$$R_{Out} = \left(r_0 // R_C\right) \tag{2.50}$$

Resumo da Configuração Emissor-Comum

No caso de $r_0 >> R_C$, como é geralmente o caso, pode-se obter expressões aproxi-madas dos índices de desempenho do amplificador EC :

$$A_{v} = -g_{m} R_{C}$$
 (2.51-a)
 $A_{i} = -\beta$ (2.51-b)
 $R_{Out} = R_{C}$ (2.51-c)

Tal como já esclarecido anteriormente, o β do TBJ representa o Ganho de Corrente em Emissor-Comum.

Em resumo pode-se delinear a seguintes propriedades do caso da configuração em Emissor - Comum (EC):

 A_{ν} : de nível elevado;

 A_i : também de valor elevado;

 R_{in} : de valor moderado;

 R_{Out} : de valor elevado (desvantagem !!).

Exemplo 2.12

Se na figura 2.65 β = 100, I = 1mA, R_C = R_S = 5k Ω e V_A = 100V, obter :

- (a) os ganho de tensão e de corrente e as impedâncias de entrada e de saída;
- (b) Se uma carga $R_L = 5 \mathrm{k} \Omega$ for ligada no capacitor C_C , re-avalie o ganho de tensão.

Solução:

Parâmetros do modelo π :

$$I_C = \alpha I_E = \frac{\beta}{\beta + 1} I_E = 0.99 \text{ mA}$$

$$g_m = \frac{I_C}{V_T} = 39.6 \text{ mA/V}$$

$$r_{\pi} = \frac{V_T}{I_B} = \beta \frac{V_T}{I_C} = 2525 \ \Omega$$

$$r_0 = \frac{V_A}{I_C} = 101 \text{ k}\Omega$$

Ganho de Tensão Total : (eq. (2.46))

$$A_{v} = \frac{-\beta (R_{C} // r_{0})}{R_{s} + r_{\pi}} = \frac{-100 (5 // 101) k}{(5 + 2,525) k} = -63,3 \text{ V/V}$$

Ganho de Corrente : (eq.(2.48))

$$A_i = -\beta \frac{r_0}{R_C + r_0} = -100 \frac{101 \text{k}}{(101 + 5) \text{k}} = -95,3 \text{ A/A}$$

Impedância de Entrada e Saída: eqs. (2.49) e (2.50)


$$R_{in} = r_{\pi} = 2525 \ \Omega$$

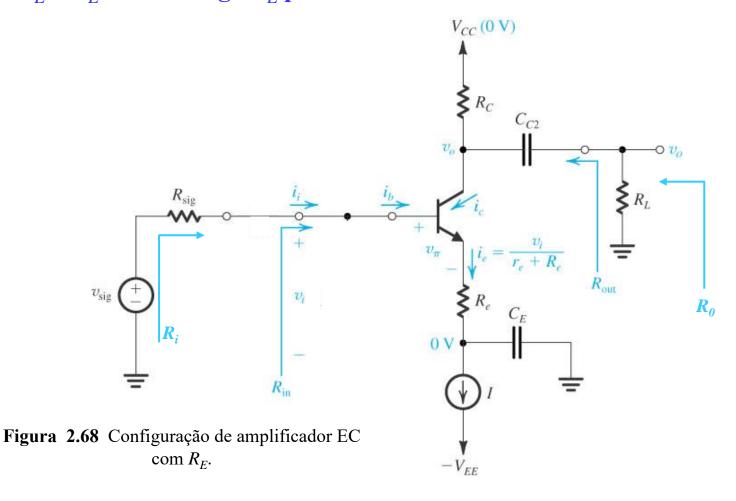
$$R_{Out} = (R_C // r_0) = 4,76 \text{ k}\Omega$$

Exemplo 2.12 Cont.

Solução (b) – Carga R_L:

A configuração do estágio de saída do amplificador passa a ser como a seguir, onde R_L aparece em paralelo com R_C e com r_0 para efeito da análise CA de pequenos sinais:

Figura 2.67 Estágio de saída do exemplo 2.12 com R_L .


$$A_{v} = \frac{-\beta (R_{L} // R_{C} // r_{0})}{R_{s} + r_{\pi}} = \frac{-100 (5 // 5 // 101) k}{(5 + 2,525) k} = -32,42 \text{ V/V}$$

O ganho de corrente A_i e a impedância de saída também são afetadas por esta mudança.

Obter A_i e R_0

Amplificador EC com resistência de emissor

A inclusão de um resistor no terminal de emissor permite alterar alguns índices de desempenho do Amplificador EC. No circuito a seguir o terminal de emissor não é mais ligado diretamente ao Terra, mas através de R_E e C_E . Uma carga R_L pode ou não estar conectada no coletor.

Análise do caso EC com R_E

Neste caso, é mais adequado o uso de um dos modelos tipo T. Desde que r_0 é normalmente grande, seu efeito pode ser desprezado e a configuração de modelo CA de pequenos sinais com modelo tipo T com fonte de corrente controlada por corrente fica sendo :

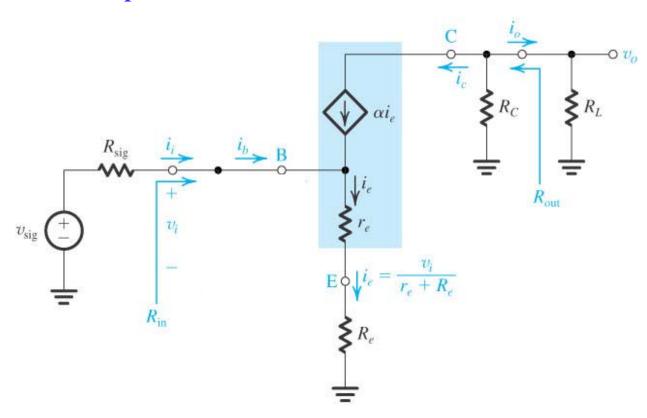


Figura 2.69 Circuito equivalente CA.

Análise do caso EC com R_E

No estágio de Emissor-Base, tem-se :

$$v_i = i_e (R_E + r_e) {(2.52)}$$

e, se:

$$i_b = (1 - \alpha)i_e = \frac{i_e}{(\beta + 1)}$$
 (2.53)

então:

$$R_{in} = \frac{v_b}{i_b} = \frac{v_i}{i_c} = (\beta + 1)(R_E + r_e)$$
 (2.54)

ou seja, R_{in} se torna (β +1) vezes maior que o caso sem R_E . Pode se mostrar ainda :

$$R_{in \text{ com } R_E} = 1 + \frac{R_E}{r_e} (R_{in \text{ sem } R_E}) \cong (1 + g_m R_E) (R_{in \text{ sem } R_E})$$
(2.55)

Uma impedância de entrada elevada em um amplificador é sempre desejada.

Análise do caso EC com R_E

Para o ganho de tensão, tem-se inicialmente (com $R_L = \infty$):

$$v_0 = -(\alpha i_e)R_C \tag{2.56}$$

e,

$$A_{vb} = \frac{v_0}{v_i} = \frac{-\alpha R_C}{R_E + r_a} \cong \frac{-R_C}{R_E + r_a}$$
 (2.57)

Desde que v_i é uma parcela da tensão da fonte v_s , pode-se obter o ganho total em relação à fonte como sendo :

$$\frac{v_i}{v_s} = \frac{R_{in}}{R_{in} + R_s} \tag{2.58}$$

$$A_{v} = \frac{v_{0}}{v_{s}} = \frac{v_{0}}{v_{i}} \frac{v_{i}}{v_{s}} = \frac{-\beta R_{C}}{R_{s} + (\beta + 1)(R_{E} + r_{e})}$$
(2.59)

Observa-se aqui que o ganho é um pouco menor, porém é mais imune à variações de β . Já que v_{π} é uma parcela de v_s , esta tensão pode ser grande.

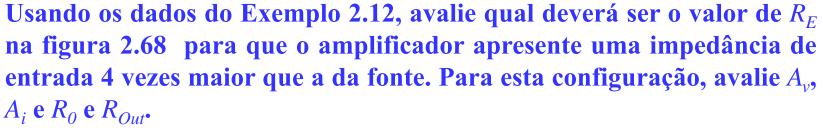
Pode-se ainda demonstrar que o ganho de corrente e a impedância de saída não se alteram.

Resumo do caso EC com R_E

Do estudo anterior, as características do amplificador EC com R_E em relação ao caso sem R_E podem ser citadas como sendo :

```
R_{in} : aumenta por uma fator \cong (1+g_m R_E);
```

 R_{Out} : não se altera;


 A_{ν} : ganho de tensão diminui;

: menos dependente de β ;

 A_i : não se altera;

Resposta em frequência melhor.

Exercício 2.10

Se v_{π} deve ser no máximo 5mV, avalie qual o valor máximo de v_s no caso SEM e COM R_E . (Exercício 4.32-Sedra . Pg.274)

Exercício 2.11

Para o circuito EC a seguir:

- (a) Avalie as expressões de ganhos e de impedâncias;
- (b) Se r_0 for desprezado, calcule os ganhos e impedâncias;
- (c) Se r_0 for tal como indicado, recalcule os resultados em (b).

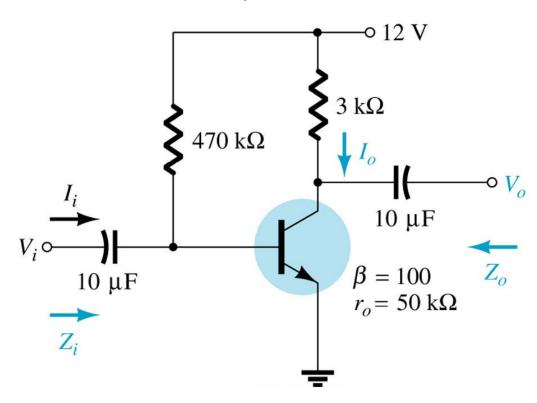
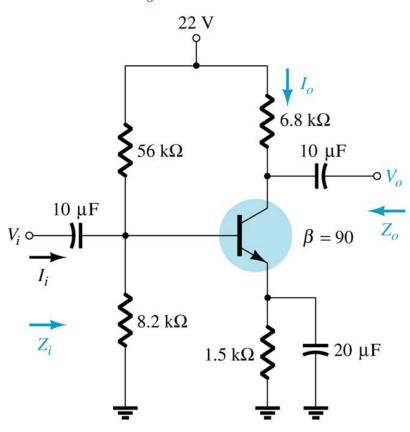


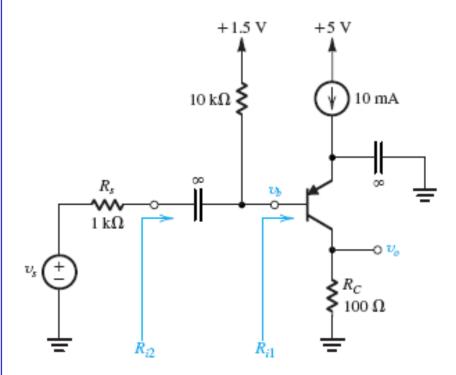
Figura 2.70 Exercício 2.11.

Exercício 2.12

Para o circuito EC a seguir:

- (a) Avalie as expressões de ganhos e de impedâncias;
- (b) Se r_0 for desprezado, calcule os ganhos e impedâncias;
- (c) Se V_A =125V, obtenha r_0 e recalcule os resultados em (b).




Figura 2.71 Exercício 2.12.

Exercício 2.13-a

O amplificador a seguir é formado por dois estágios idênticos em EC. Se V_{CC} =15V, R_1 =100k Ω , R_2 =47k Ω , R_E =3k9 Ω , R_C =6k8 Ω e β =100, obtenha: a) – A tensão e corrente nos coletores de Q_1 e Q_2 ; b) – circuito completo equivalente de pequenos sinais; c) – R_{in1} e (v_{b1}/v_s) com R_s =5k Ω ; **d)** $-R_{in2}$ **e** (v_{b2}/v_{b1}); e) – (v_0/v_{h2}) com R_L =2k Ω ; f) – Ganho global (v_0/v_s). $A V_{CC} A$ $R_{\rm in1}$ R_{in2} Figura 2.72 – (a): Exercício 2.13-a.

Exercício 2.13-b

- O Amplificador abaixo usa um TBJ com $\beta = 200$.
- (a) Encontre a Tensão CC de coletor V_C ;
- (b) Encontre as impedâncias de entrada R_{i1} e R_{i2} ;
- (c) Encontre o ganho de tensão global (v_s/v_s) ;
- (d) Se é desejado que v_o seja ± 0.4 V que valores são requeridos para v_s e para v_b indicados na figura

Figura 2.72 – **(b)** : Exercício 2.13-b.

Exercício 2.13-c

O para o amplificador abaixo:

- (a) Encontre a corrente I_{CQ} e a tensão de coletor V_{CQ} ;
- (b) Usando modelo equivalente T para pequenos sinais, encontre o ganho (v_0/v_i) .

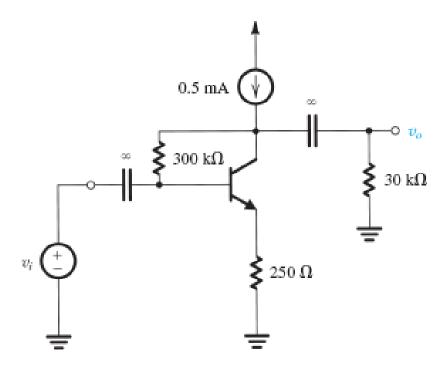


Figura 2.73 – (c) : Exercício 2.13-c.

Bibliografia

Conteúdo:

SEDRA: Pgs. 268 a 274

BOYLESTAD: (Cap. 8)

MALVINO: 318 a 343

Exercícios:

SEDRA: Exs 29 ao 33 Pgs. 323 - 324

BOYLESTAD: Exs. 1 ao 10 Pgs. 315 - 316

MALVINO: 1 ao 17 Pgs. 341 - 343