QFL-2129 Química Inorgânica – GAQ – Alunos de Engenharia 2017

Instituto de Química – Universidade de São Paulo Docente: Ana Maria da Costa Ferreira

LISTA DE EXERCÍCIOS

AULAS 10/11 – COMPOSTOS DE COORDENAÇÃO

- 1. Identifique, nos compostos de coordenação especificados abaixo, o estado de oxidação do metal, o número de coordenação e os contra-íons:
 - a) [Fe(H₂O)₄Cl₂]Cl;
 - b) [Cu(en)₂]Br₂;
 - c) Na₂[CuBr₄];
 - d) Fe(CO)₅;
 - e) $K_3[Cr(ox)_3]$ en = $NH_2CH_2CH_2NH_2$; ox = oxalato= $[C_2O_4]^{2-}$.
- 2. Quais as geometrias de coordenação mais usuais em compostos de coordenação?
- 3. Como se explica termodinamicamente a formação de compostos de coordenação?
- 4. Calcule a EECL (energia de estabilização do campo ligante) para complexos com estrutura octaédrica, nas seguintes configurações eletrônicas:
 - a) d³; b) d⁵spin alto; c) d⁹.
 - b)Qual deles deverá ser o mais estável?
- 5. Usando a série espectroquímica, determine a configuração eletrônica provável (na forma $\mathbf{t_{2g}}^{\mathbf{x}} \, \mathbf{e_g}^{\mathbf{y}}$ no caso de complexos octaédricos ou $\mathbf{e^{x}t_{2}^{y}}$ no caso de complexos tetraédricos), conforme for mais apropriado. Verifique o número de elétrons desemparelhados e calcule a EECL em múltiplos de Δ_0 ou Δ_t para cada um dos complexos.
 - a) $[Co(NH_3)_6]^{3+}$; b) $[Fe(H_2O)_6]^{2+}$; c) $[FeCl_4]^{2-}$; d) $[Ni(CO)_4]$.
- 6. Para os complexos abaixo, há possibilidade de formação de isômeros? De que tipo?
 - a) $[Co(NH_3)_4(SCN)_2]^+$; b) $[Fe(H_2O)_3Cl_3]$; c) $[Co(en)_3]l_3$; d) $[Cu(bpy)Cl_2]$ Desenhe suas estruturas prováveis.
- 7. Quais dos compostos abaixo você esperaria que fossem paramagnéticos (isto é, apresentassem elétrons desemparelhados)?
 - a) $[Ni(NH_3)_6]^{2+}$; b) $K_4[Fe(CN)_6]$; c) $Na_3[FeF_6]$; com estrutura octaédrica e
 - d) K₂[CoCl₄]; e) Na₂[Zn(OH)₄] com estrutura tetraédrica.
- 8. Calcule o momento magnético (contribuição apenas do spin) para os compostos:

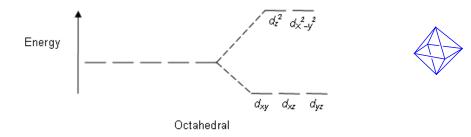
- a) [Ni(NH₃)₆]²⁺ (simetria octaédrica)
- b) [Ag(NH₃)₂]⁺ (linear)
- c) [CoCl₄]²⁻ (simetria tetraédrica)
- d) [Cr(NH₃)₆]³⁺ (simetria octaédrica)
- 9. Determine o número de elétrons desemparelhados e a energia de estabilização do campo ligante (EECL) nos complexos:
 - a) $[Fe(CN)_6]^{3-}$
 - b) $[Fe(H_2O)_6]^{2+}$
 - c) $[Cr(NH_3)_6]^{3+}$
 - d) [CoCl₄]²⁻
 - e) [PtCl₆]²⁻

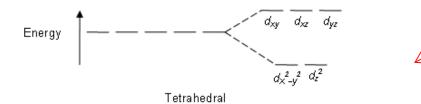
Dados:

 $Cr = [Ar]3d^54s^1$

Fe = $[Ar]3d^64s^2$

 $Co = [Ar] 3d^7 4s^2$


 $Ni = [Ar] 3d^8 4s^2$

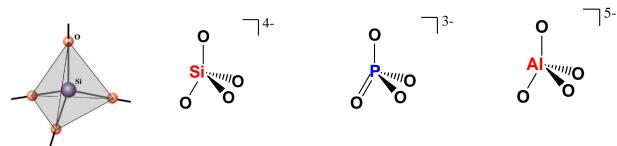

 $Zn = [Ar]3d^{10}4s^2$

 $Ag = [Kr]4d^{10}5s^{1}$

 $Pt = [Xe]4f^{14} 5d^96s^1$

Esquema de desdobramento de níveis de energia

10. Com base num ciclo termodinâmico (vide abaixo), explique porque o potencial redox de um metal varia, conforme o ligante a que está coordenado.


Par redox
$$E^{\circ}$$
, V
 $[Fe(H_2O)_6]^{3+} + e^{-} \rightarrow [Fe(H_2O)_6]^{2+} +0.77$
 $[Fe(phen)_3]^{3+/2+} +1.15$
 $[Fe(oxalato)_3]^{3-/4-} +0.02$

$$E = E^{\circ} - (RT / nF) In K$$

AULAS 12/13 – QUÍMICA SUPRAMOLECULAR. POLÍMEROS INORGÂNICOS. ZEÓLITAS, ARGILAS E MOFS

- 1. O que são compostos supramoleculares? Dê alguns exemplos.
- 2. Existem polímeros inorgânicos? Dê exemplos e mostre suas estruturas.
- 3. Que são zeólitas? Como se explica sua estrutura?
- 4. Quais são os principais usos de zeólitas na indústria? Que propriedades são importantes para estas aplicações?
- 5. Descreva um processo em que zeólitas são utilizadas como catalisadores. Explique qual o papel da zeólita neste processo.
- 6. Como uma zeólita pode tornar mais seletiva uma reação? Use como exemplo a oxidação de substratos orgânicos.
- 7. Como é a estrutura das argilas?
- 8. Quais são as semelhanças e diferenças entre zeólitas e argilas? Quais os usos das argilas, com interesse industrial?
- 9. Que são arcabouços metalo-orgânicos (MOFs)? Como são formados? Esquematize uma dessas estruturas (baseie-se em exemplos conhecidos).
- 10. Quais os principais usos de interesse para esses MOFs?

LEMBRETES:

