Semaphores

Processes, Synchronization, & Deadlock

Intarpmcaﬁﬁ Communication

Why communicate? Classlc Example:
Concurrency “PRODUCER-CONSUMER” Problem:
253“5'"”":" PRODUCER
rocesses as a
programming primitive @{HEUMEE
Data/Event driven @
How to communicate? T e
Shared Memory send(c); | |loop: & =rev();
(overlapping contexts)... goto loop <Yy
Supervisor calls aoto loop
Synchronization Instructions,
(hardware support) Real-World Examples:

UNIX pipeline,
Word processor/FPrinter Driver,

Preprocessor/Compller,
Compller/Assembler

Synchronous Communication

lop: w0
send{c];
gota loop
P FEODUCEE

c = row
Y

gote loop

bog:

CONSUMEE

-

Precedence
Constraints:

“a-B)

“@ precedes "

 Can't CONSUME data
before it's FREODUCED

[m,j m—,]_.

* Producer can't
“OVEEWEITE" data
befors it's consumead

o= s |

FIFO Buffering

FELAXES interprocess
@_{]_,C) synchronization constraints.
FIFD buffer Buffering relaxes the following

OVEEWEITE consatraint to:

[m.ﬁsem]
Rendpte | o 7 v v ¥
.10 D H EH e R

Example: Bounded Buffer Problem

& ™y
SHAEED MEMOEY":
char buf[N]; /* The buffer */
int in=0, out=0;
L "y
™ ™
'FFE&‘.'.H]'I.I[.'EE: I'f--I'_'h!?.lr'-IE-L.II'.'IEﬁ.’:
send (char) char rewvi()
{ { char c;
buf[in] = c; c = buf[out] ;
in = (in+l)% N out = (out+l)® H;
} return c;
)
L A A

Froblem: Doean't enforce pmmdtm:a: conatraints
(&.g. rev() could be invoked prior to any send())

Semaphores (Dijkstra)

Programming construct for synchronization:

NEW DATA TYPE: semaphore, integer-valued
semaphore s = K; /* initialize s to K */

NEW OPERATIONS (defined on semaphores):
* wait (semaphore s)
stall current process if (s <=0), otherwise s =5~ 1
« signal (semaphore =)
s =5+ 1, (can have side effect of letting other processes proceed)

SEMANTIC GUARANTEE: A semaphore s initialized to K

enforces the constraint: e
relationship,
Often you wil see meaning that the (i+K)™
P(6) uted for wadt () | < l el ot
vie) ua:!: “grul e s‘g nal(s)l M wan;(s);,g | canmnot pr:ch:ai before
P » "probere[test) or
‘patker(grab) call to

e verhagen Tincresse) signal comgletes,

Semaphores for Resource Allocation

ABSTRACT PROBLEM:

* POOL of K resources
* Many processes, each needs resource for occasional

uninterrupted periods
* MUST guarantee that at most Kresources are inuse at any time.

Semaphore Solution:

In shared memory:

semaphore s = K; /* K resources */
In each process:

wait(s); /* Allocate one */

—_— /* use it for a while */
signal(s); /* return it to pool */

Invariant: Semaphore value = number of resources left in pool

Flow Control Problems

(P)| M ()

G: What keeps FRODUCER from putting M+1 characters
into the N-character buffer?

A: Nothing.

Eesult: OVEEFLOW. Eandomnass. Havoo. Smoke. Fain. Suffering.
D's and F's in MIT courses.

WHAT we've got thus far: WHAT we still need:

] (e

moreé

Bounded Buffer Problem w/*Semaphores

fé SHARED MEMORY: 2
char buf[N]; /* The buffer */
int in=0, out=0;
semaphore chars=0, space=N;

. /

/PRODUCEIE ‘\ /CONSUMEK: \
send (char c) char rcv()

{ {

wait (space) ; char c;

buf[in] = c; wait (chars) ;

in = (in+l)&N; c = buf[out];
signal (chars) ; out = (out+l)%N;

} signal (space) ;

return c;
- g \J g

RESOURCEs managed by semaphore: Characters in FIFO, Spaces in FIFO
WORKS with single producer, consumer. But what about. ..

Simultaneous Transactions

E-uFFH:!u: you and your friend visit

the ATM at exactly the same time,

and remove $ 50 from your
account. What happens?

Debit(int account, int amount)

{

t = balance[account];
balance[account] = t = amount;

}

What is supposed to happen?
Process # 1 Process #2

LD{E 10, balance, B
SUB(ED, B1, BO)
ST(ED, balance, B10)

LE{EA0, balance, BO)

SUB{ED, &1, BD)
ST(RD, balance, B10)

MET: You have § 100, and your bank
balance is $ 100 less.

But, what if...

Froceass & 1
LD O, balance, B

Proceos #2

LEXEAD, balance, BD)

SUB{ED, B1, B)
ST(ED, balance, E18)

SUB(ED, B1, BO)
ST{ED, balance, E10)

NET: You have $ 100 and your bank
balance is $ 50 less!

We need to be careful when writing

concurrent programs. In particular,
when modifying shared data.

For certain code asegments, called
CEITICAL SECTIONS, we would like

to asaure that no two executions
nw:rr.alp.

Thia constraint is called
MLUTUAL EXCLUSION.

Solution: embed critical sections in
wrappers (e.g., "transactions”)
that guarantee their atomicity. i.e.
make them appear to be single,

inastantansous c-pu:rat':c-ns.

Semaphores for Mutual Exclusion

semaphore lock = 1;

Debit{int account, int amount)

{

wait{leck): [/* Wait for exclusive access *f

t = balance[account);
balance{account] = t = amount:;

signal{lock): /* Finished with lock *f

}

axp]|
“a precedesp

[precedes o’
(L., they don't overlap)

FESOUECE managed by “lock” semaphore: Access to critical section

ISSLUES:

Cranularity of lock
1 lock for whole balance database?

1 lock per account?
1 lock for all accounts ending in 0047

Implementation of wait() and signal() functions

Producer/Consumer Atomicity Problems

Consider multiple FEODUCEE. processes:
e* N-character o
e FIFO butfer |

A .

buf[in] = &; .

1" buf[in] = e;
in = (in#1l) % Hj; _ T

T in = (im+l) T M;

BUG: Producers interfere with each other.

ﬂﬁ“““ﬂﬁ
Bounded Buffer Problem w/*Semaphores

- ™
SHARED MEMORY:

char buf[N] ;
int in=0, ocutsi:;

& emapho e chars=0, EpacesN ;
semaphore mutexs];
"

f*= Tha buffer *f

y
" PRODUCER: ™ cONSUMER: ™
send (char a) char rov()
{ { char &;
wait (space) ; wait ({chars) ;
wailt (mutex) ; walkt (muteax) ;
buf[in] = &; ¢ = buf|[oakt] ;
in = {in+l)%N; out = [(out+l)EN;
signal (mutex) ; signal (mutex) ;
signal {chars) ; signal (space) ;
} . return o)
.) vy

The Power of Semaphores

" SHARED MEMORY:

A single
char buf[H]; /* The buffer =/ synchronization
int insd, out=); primitive that enforces
semaphore chars=0, space=N; both:
tumpl:unr- mutex=] ;
o
-
¢ FPRODUCER: (7 CONSUMER: ™ Precedence
send {char @) char rev() relationships:
{ { char e&;
wait (space) ; wait (chars) ; send, == rew
walt (matex) walt (mutex) ; ey = 5.5;1'.1
buf[in] = e; e = pbuf[out] ; “i e
in = (in+l)%N; out = (out+l)EN;
signal (mutex) ; signal (mitex) ;)
signal (chars) ; signal (space) ; Mutual-exclusion
} return c; relationships:
I"H.. _f-f" I'H._} _.f'l progect variables

in and out

Semaphore Implementations

Semaphore implementation must address a basic arbitration problem:
how to choose among simultaneously waiting processes when a signal
occurs. This involves some basic atomicity assumption in the
implementation technology.

Approaches:

* SVC implementation, using atomicity of kernel handlers. Works in
timeshared processor sharing a single uninterruptable kernel.

* Implementation by a special instruction (e.g. "test and set”), using
atomicity of single instruction execution. Works with shared-bus
multiprocessors supporting atomic read-modify-write bus
transactions.

* Implementation using atomicity of individual read or write operations.
Complex, clever, 2Z-phase schame devised by Dijkstra. Unused in
practice.

Bootstrapping: A simple lock (“binary semaphore”) allows easy
implementation of full semaphore support.

{

}

Semaphores as Supervisor Call

walt,_h{)

int “addr,
addr = User. Bega[ED) ° getarg ®f
if [“addr «m O {
User-Rega[XF] = User.Bags[XF] - 4;
:I.n:ep{.'ld.-.‘h-]:
}el=e
“2ddr = “addr- 1;

signal_h{)

{

int *addr

addr = User. Eega[ED) ° getarg ®f
*addr = *addr « 1:

l.l.l.lh:l.p{addr]:

Calling sequence:

|| put address of lock

|| inte RO
CMOVE (lock, RO)
SVC (HAIT)

SVC call is not interruptible
since it s executad in

SUpervisory mode.

H/W support for Semaphores

TCLR(RA, literal, RC) test and clear location

FCe~FL+ 4

_EA«—Feg[Ra] + literal
Feg[Fc] +=MEM[EA] Atomicity
MEM[EA] += O Guaranteed a4 by

Bus protocols

Executed ATOMICALLY (cannot be interruptad)

Can easily implement mutual exclusion using binary semaphore

wait: TOLR(R31, lock, BO) |
BEQ(RO, wait) } wait{lock)
... CRitica saction ...

CMOVE(1.ED)], signal{lock)
ST(ED, lock, E31)

Synchronization: The Dark Side

The indiscriminate use of synchronization constraints can

introduce its own set of problems, particularty
ProLess r'Eq_Uir‘EE access to more than one
protected resource.

Transfer(int account 1, int account 2, int amount)

{
wait{lock[account 1]}
wait{lock[account 2]}
balanca[accownt 1] = balance[account 1] - amount;
balanca[account 2] = balance[account 2] + amount;
signal(lock[account2]):
signal(lock[account1]):

DEAD-
LOCK!

Famous Toy Frablem:

Dining FPhilosophers

Philesophars think deap thoughts, but hawe
simple sacular needs. When hungry a group

of N philosophears will sit around a table
with w.-:h-:pﬁtiﬂﬁ Ntarsparsed batwean =
them. Food is served, and each phi

enjoys a kisurely meal using the chopsticks
on githar side to aat (2 sticks are requirad,
to avoid an ancient Zen paradox about the
sound of one stick feading).

They are excaedingly polite and patient, and Frgure by MIT OpenCourse W are,
sach follows the following dining protocet

FHILOSOPHER'S ALGORITHM:

* Taks [wait for) LEFT stick
* Taks [wait for) RIGHT stick
* EAT until sated

* Raplace both sticks

Deadlock!

Mo one can make progress bacause they are all waiting for an unavailable resource

CONDITIONS:

1) Mutual sxclusion - only ons
&5 can hold 4 resourcs
at a given Cirms

2] Hold-and-wait - a process
holds allocated rescurceas

whils waiting for others
3) Mo preemption - a resourca Figure by MIT OpenCourseWare.
can not be removed from a
process holding it
SOLUTIONS:
4 Circular Wait Avoldance
(i

Petaction and Escovery

One Solution

EEY': Assign a unique numbear to sach

chopstick, request resourcas in -
globally consistant ordar @ %
- E|

Maw Algorithm:

* Take LOW stick

* Take HIGH stick

*« EAT

* Replace both sticks.

Figure by MIT OpenCourse W ane,
SIMFLE FEOOF:

Deadlock means that each philosopher is waiting for a resource held by
some other philosopher . .

But, the philosopher holding the highest numbered chopstick can't be
waiting for any other philosopher (no hold-and-wait) ...

Thus, thers can be no deadlock

Cooperating processes:
Establish a fixad ordering to sharsd resources and require all requests to
be mads in the prescribed ordar

Tramifer{int decount 1, int dedount2, inl Jmoutt)
i

inL &, b
H [decount] » decownTZ) { a = Secounl ;b e decountd; | ehise {4 = secownTE; b = atosunt 1; }

wait{leek[a]);

it {ooki)
balince{dcecunt 1] = balance o outT]] » articunt;
balince{decduntd] = balance] doc oun Tl + SrmowiT;
Hapal{locib]):
sigralllack[a]);

}

Unconstrained processes: Tramsher(E001, 5004, SO)T 5001, 50)
= QS discovers circular wait & kills waiting process

= Transaction model
= Hard problem

Summary

Communication among asynchronous processes requires
synchronization....
* Frecedence constraints: a partial ordering among eperations

+ Semaphores as a mechanism for enforcing precedence
constraints

¢ Mutual exclusion [(critical sections, atomic transactions) as a
common compound precedence constraint

+ Solving Mutual Exclusion via binary semaphores
+ Synchronization senializes operations, limits parallel execution.

Many alternative synchronization mechanisms exist!

Deadlocks:

+ Consequence of undisciplined use of synchronization mechanism
* Can be avoided in special cases, detected and corrected in others.

