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and cardiometabolic risk including weight gain, cardiovas-
cular disease outcomes and diabetes only when restricted 
to sugar-sweetened beverages and not for sugars from other 
sources. In fact, sugar-sweetened beverages are a marker 
of an unhealthy lifestyle and their drinkers consume more 
calories, exercise less, smoke more and have a poor dietary 
pattern. The potential for overconsumption of sugars in the 
form of sugary foods and drinks makes targeting sugars, as 
a source of excess calories, a prudent strategy. However, 
sugar content should not be the sole determinant of a healthy 
diet. There are many other factors in the diet—some provid-
ing excess calories while others provide beneficial nutrients. 
Rather than just focusing on one energy source, we should 
consider the whole diet for health benefits.

Keywords Sugars · Fructose · Obesity · Overweight · 
Diabetes · Cardiovascular disease · Review

Introduction

Overconsumption of dietary sugars with their potential to 
cause cardiometabolic disease has emerged as an important 
public health issue, highlighted by the vast coverage given 
in academic journals and the popular press. Special focus 
is on the fructose moiety within sugars due to the former’s 
unique metabolic and endocrine response. Fructose-con-
taining sugars that are ‘added’ to our diets are alleged to 
be an important risk factor for the development of obesity 
[1], cardiometabolic disease [2] including metabolic syn-
drome [3] and diabetes [4]. Leading organizations includ-
ing the World Health Organization (WHO) [5] and Cana-
dian Diabetes Association (CDA) [6] have recommended 
a reduction in added sugar. The case against the harms of 
fructose-containing sugars appears straightforward at first, 
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but in reality the debate is more nuanced. It was just in 
recent past that saturated fat was of public health concern 
for its adverse effects on obesity and cardiovascular dis-
ease—though the blame has now been shifted to fructose-
containing sugars [7, 8]. In this paper we aim to present 
a review of the highest level of evidence on dietary sug-
ars and their effect on obesity and cardiometabolic disease 
including important considerations that sheds light on some 
of the controversies around this topic.

Historical roots

The story of dietary sugars and their potential harms on our 
health has oscillated several times over the past five dec-
ades as more scientific evidence on this topic came to light. 
Hence, it is important to give a brief historical background 
to the scientific controversy surrounding dietary sugars. 
The sugar debate first started in the 1970s when opposite 
positions were presented as explanations for the epidemic 
of cardiovascular disease. In the 1970, the American bio-
chemist Ancel Keys, using his seven countries ecological 
study, argued for a role of saturated fat in heart disease [9], 
while in 1972 John Yudkin, a British nutritionist, warned 
in his book, ‘Pure, White and Deadly’ that dietary sugars 
were responsible for the rise in heart disease and diabetes 
[10]. At that time, the fat hypothesis gained general accept-
ance, and for the next four decades, low-fat dietary advice 
became part of many national nutritional guidelines with 
the aim of reducing the risk of chronic diseases like cardio-
vascular disease [11].

Dietary sugars came into forefront again in 2004 when 
Dr. George Bray, an eminent obesity researcher, published 
an ecological study that showed a parallel rise between 
overweight/obesity and fructose-containing sugars in the 
USA [12]. In an ecological study, the units of analysis are 
populations or groups of people rather than individuals; 
therefore, any conclusions derived may not apply to indi-
viduals; to do so erroneously is known as ecological fal-
lacy [13]. It is also well recognized that an ecological study 
represents a very weak level of evidence [14], and Dr. Bray, 
rightly, presented his findings as hypothesis generating 
rather than causal.

Dr. Bray’s study sparked a real interest in this field and 
kick-started a new sugar debate that has continued fiercely 
to this day. Dr. Robert Lustig, a paediatrician from Univer-
sity of California San Francisco, in 2009 made a passionate 
case against fructose in the popular YouTube video, ‘Sugar: 
The bitter truth’ [15] that currently (November 2016) has 
more than six-and-a-half million views. This YouTube 
video was followed by a steady increase in the number of 
editorials, commentaries and opinion pieces in scientific lit-
erature that denoted added fructose and its related sugars 

[sucrose and high-fructose corn syrup (HFCS)] as health 
hazards while calling for measures to restrict their intake 
[1, 16–20]. In the past several years traditional and social 
media caught up with the scientific debate and have now 
published numerous popular books, mainstream docu-
mentaries and newspaper headlines portraying fructose-
containing sugars as being toxic [21–23]. The public gets a 
confusing message as several nutrition researchers stand in 
opposite camps on the harms of fructose-containing sugars 
debate [24, 25]. Controversies regarding ties of research-
ers with the sugar industry have further fuelled the debate, 
e.g. it was recently reported that when writing an influ-
ential review paper that downplayed the harms of sugars 
several decades ago, the authors did not disclose their ties 
with the sugar industry [26]. It is debatable whether these 
ties bias the work that researchers perform; however, exist-
ence of such ties has turned a purely scientific dialogue into 
an intensely emotional one. It is clear that the message of 
the harms of sugars is much louder and dietary sugars are 
now squarely blamed for the rising epidemic of obesity and 
chronic disease in the Western nations, and with some even 
drawing strong parallels with tobacco [27]. The question 
that remains is whether, based on the best available sci-
entific evidence, this clarion call against dietary sugars is 
justified?

At first glance, the case presented against sugars is 
quite persuasive, which hinges on implicating the fruc-
tose moiety for its unique metabolic and endocrine 
responses. Fructose is present in all main dietary sugars 
except for milk. Proponents of this fructose-centric view 
present ecological data, supporting it with animal stud-
ies and human mechanistic studies that show adverse 
effects of fructose in very high doses [28]. This evidence 
is backed by sound biochemical plausibility which indi-
cates that fructose, unlike glucose, acts as an unregulated 
metabolic de novo substrate for fatty acid synthesis in the 
liver as it bypasses the main rate-limiting steps of gly-
colysis [29]. A new hypothesis of metabolic syndrome 
that involves fructose-induced increases in uric acid via 
the depletion of intracellular adenosine triphosphate fur-
ther supports the plausibility of fructose’ special meta-
bolic role [30]. Other likely mechanisms of harm relate 
to fructose’ unique endocrine signature, whereby fructose 
does not stimulate insulin, or the ‘satiety hormone’ lep-
tin, nor suppresses the ‘hunger hormone’ ghrelin, leading 
to an overall impaired satiety signalling [31]. Functional 
magnetic resonance imaging (fMRI) studies suggest that 
fructose differentially stimulates hypothalamic centres 
associated with the regulation of food intake and reward 
compared with glucose [32]. Other mechanisms may 
relate to hedonic pathways, whereby fructose-containing 
sugary foods are over-consumed owing to their high pal-
atability and an inability to compensate for the energy 
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consumed in liquid form, such as sugar-sweetened bever-
ages (SSBs) [2, 33].

It is worth noting that the bulk of the biochemical and 
metabolic evidence presented against fructose is based on 
rodent models [4, 30, 34] and human mechanistic studies 
[4, 32, 35]. As reviewed recently by Van Buul et al. [36], 
these human mechanistic studies are insufficient to dem-
onstrate a causal role of fructose in metabolic diseases as 
these often involve feeding large amounts of pure fructose 
without concomitant glucose intake. However, fructose is 
commonly ingested in an almost 1:1 ratio with glucose, e.g. 
as the table sugar sucrose, which is a disaccharide made of 
the monosaccharides fructose and glucose; as fructose and 
glucose in high-fructose corn syrup (HFCS) found in SSBs; 
as fructose, glucose and sucrose found in fruit and honey. 
In parallel, ecological observations that link increase in 
fructose availability with increase in obesity, diabetes and 
hypertension [3, 12, 37] are offered as compelling proof 
that these mechanisms are indeed in operation. Even so, 
animal and ecological studies should only be considered 
to be hypothesis generating owing to their indirectness and 
many potential sources of bias. Moreover, extrapolation 
of the above mechanisms from animal models to humans 
needs to be done carefully, with the understanding of limi-
tation due to biochemical and physiological differences that 
exist [38]. In the case of dietary sugars, it is still unclear 
whether the high doses given in animal models apply to 
the median level of fructose consumption in humans, and 
whether they then lead to meaningful downstream out-
comes. For example, there are differences between rodents 
and humans on how fructose is metabolically handled 
in the liver. Typically, in the human liver, 50% of a fruc-
tose load is converted into glucose, 25% into lactate and 
approximately 15% into glycogen [39]. Stable isotope 
tracer studies have found that de novo lipogenesis pathway 
for fructose in humans is very minor (<1%) at moderate 
intake and up to 5% in overfed state, but in mice livers de 
novo lipogenesis pathway converts typically ~30% of fruc-
tose to triglycerides and reaches beyond >50% in overfed 
states [36, 40].

Several international and national health authorities have 
recently changed their dietary guidelines recommending 
a restriction in dietary sugars intake. Is this recommen-
dation based on evidence of harm in relation to obesity, 
diabetes and cardiovascular disease? A careful review of 
these guidelines reveals that most of these guidelines use 
evidence from dental harms and caloric harms associated 
with excess sugar, especially SSB intake. The WHO rec-
ommended added sugars to be <10% of total daily energy 
intake based on observational data from dental caries [5]. 
This amounts to <50 g (12 teaspoons) of added sugars/
day based on a typical 2000-kilocalorie diet. The term 
‘free sugars’ (we use the equivalent term ‘added sugars’ 

throughout this paper) is defined by WHO as ‘monosac-
charides and disaccharides added to foods and beverages 
by the manufacturer, cook or consumer, and sugars natu-
rally present in honey, syrups, fruit juices and fruit juice 
concentrates’ [5]. This definition does not include ‘intrinsic 
sugars’, which are those ‘incorporated within the structure 
of intact fruit and vegetables’ or ‘sugars from milk (lactose 
and galactose)’. Dietary Guidelines Advisory Commit-
tee (DGAC) that informs the US Department of Agricul-
ture (USDA) dietary recommendations provided a similar 
recommendation to reduce calories from added sugars to 
<10% based on dietary pattern modelling [41]. Scien-
tific Advisory Committee on Nutrition (SACN) of the UK 
(UK) used clinical trial data to show that high sugar intake 
was associated with high energy intake—so both need to 
be reduced—and recommended <5% intake of added sug-
ars [42]. The Heart and Stroke Foundation of Canada fol-
lowed the WHO recommendation, but in addition to citing 
evidence from dental caries, it also assessed evidence indi-
cating that excess sugars (using SSB data from prospec-
tive cohort studies) consumption is associated with adverse 
health effects including heart disease, stroke, obesity, 
diabetes, high blood pressure, cancer to support a recom-
mendation of <10% dietary intake of energy from sugars 
[43]. Similarly, using evidence from prospective cohort 
studies of SSB intake on risk of obesity and diabetes, the 
CDA also submitted a position statement in September 
2015 recommending <10% calories to come from added 
sugars [6]. The Nordic Nutrition Recommendations of 
2012 also called for a restriction of added sugars to be kept 
below 10% total energy intake [44]. The evidence used 
in this case was threefold: (1) restriction on added sugars 
will ensure adequate intake of micronutrients and dietary 
fibre while supporting a healthy dietary pattern, (2) SSBs 
are associated with an increased risk of type-2 diabetes and 
excess weight gain and should, therefore, be limited, and 
(3) avoidance of frequent consumption of sugar-contain-
ing foods can reduce risk of dental caries. It is worth not-
ing that in all of the above guidelines, the major focus was 
on restricting calories from added sugars especially in the 
form of SSBs, which suggests that more consideration was 
given to calories rather than any unique biochemical sig-
nal from fructose-containing sugars. Indeed, there was no 
restriction on fruits and vegetables which also contribute to 
fructose-containing sugars in the diet.

Dietary sugars intake has become a charged and emotive 
issue, both academically and in the media, and it is essen-
tial that we separate statements and opinions from the clini-
cal evidence produced by high-quality research studies. 
Careful consideration should be given to the totality of evi-
dence in this debate including the highest level of evidence 
from human clinical studies. It seems premature to provide 
human mechanistic studies as proof of harm in the absence 
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of clear evidence of adverse effects of fructose on clinically 
meaningful outcomes. The major question that needs to 
be answered is: is there something special about fructose 
metabolism that increases the risk of obesity and chronic 
disease, or is the harm is related just to the excess calories 
it provides. In this review, we aim to present a synthesis 
of the highest quality evidence involving human subjects to 
answer this question.

Level of evidence

Figure 1 shows the hierarchy of evidence, initially devel-
oped by the Canadian Task Force on the Periodic Health 
Examination to help decide on priorities when searching 
for studies to answer clinical questions [45] and was subse-
quently adopted by the US Preventive Services Task Force 
[46]. This evidence-based framework represents a univer-
sally recognized accepted standard that informs public 
health policy and clinical practice guidelines, and it shows 
that the best source of evidence comes from randomized 
controlled trials (RCTs) because they offer the best pro-
tection from bias [47]. The only level of observational evi-
dence that informs public health policy and clinical prac-
tice guidelines is prospective cohort studies, and we will 
start our presentation from this level of evidence.

Evidence from prospective cohort studies

Prospective cohort studies are characterized by a long-
term longitudinal follow-up, good measurement of dietary 
exposures, superior ascertainment of incidence of disease 
and mortality outcomes (and not just surrogate markers) 
and the ability to adjust for multiple confounding factors 
[48]. These advantages enable prospective cohort studies to 

present some of the strongest evidence from observational 
studies for assessing the relation of dietary sugars exposure 
to obesity, diabetes and cardiovascular disease. While this 
makes prospective cohort studies a good place to look at 
the question of sugars and incidence of disease, drawing 
clear inferences from prospective cohort studies is some-
what complicated by the form in which fructose-containing 
sugars are consumed as the majority of evidence is avail-
able only from SSBs.

A WHO-commissioned systematic review and meta-
analysis of prospective cohort studies did not find any asso-
ciation between total fructose-containing sugars and body 
weight [49]. Similarly, large prospective cohort studies 
have not shown any association with diabetes [50], hyper-
tension [51] and coronary heart disease (CHD) [52]. One 
exception is gout where it was associated with fructose 
consumption in a systematic review and meta-analysis of 
prospective cohort studies [53].

Regular consumption of SSBs indicates that it can lead 
to weight gain and substantially increase risk of developing 
cardiometabolic diseases [54]. A WHO-commissioned sys-
tematic review and meta-analysis of 38 prospective cohort 
studies showed a significant association between SSBs and 
the risk of overweight/obesity in children and weight gain 
in adults [49]. Another meta-analysis of 22 prospective 
cohort studies found similar results in both children and 
adults [55]. In like manner, a systematic review and meta-
analysis of 17 prospective cohort studies showed a similar 
adverse association between SSBs and incident diabetes 
[56]. Significant relationship of SSBs also exists with meta-
bolic syndrome [57], hypertension [58], CHD [59, 60], 
stroke [61] and gout [62].

Meanwhile, pooled analyses involving many of the same 
prospective cohort studies that were used in the analysis of 
SSBs did not find harmful relationships between type 2 dia-
betes and total dietary sources of sugars (liquid or solid), 

Fig. 1  Hierarchy of evidence in 
evidence-based medicine
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total sucrose, total fructose [63] or other sources of added 
fructose such as 100% fruit juice [64] and cakes and cook-
ies [65]. In fact, some sources of sugars including whole-
grain cereals [66], yogurt [67] and ice cream [67] showed 
a positive benefit with type 2 diabetes (see Fig. 2). This 
does not necessarily mean that ice cream might be benefi-
cial for type 2 diabetes, but highlights the complexity of the 
relationship between the dietary source of sugars and dis-
ease outcomes [68]. To make matters even more complex, 
another important source of fructose-containing sugars, 
fruits and vegetables, has consistently shown to reduce the 
risk of type 2 diabetes [69], CHD and total mortality [70] in 
pooled analyses of large prospective cohort studies.

Are sugar‑sweetened beverages a special case?

The contrast of results between sugars provided by SSBs 
and sugars from other food sources is striking; the former 
shows a consistent signal of harm, while the latter shows 
either no harm or a benefit. These results suggest that sug-
ars from SSBs might be a special case and this assertion 
is supported by several plausible explanations. One, the 
association might be related to energy as the observed asso-
ciations between SSBs and cardiometabolic diseases only 
remain significant at the highest quantiles of exposures and 
do not remain significant at mean levels of exposures for 
USA, the exception being gout [53]. The disappearance or 

marked attenuation of the effect of SSBs on weight gain 
after adjustment for total energy in one meta-analysis [55] 
and on diabetes risk after adjustment of adiposity [56], a 
proxy of high caloric intake, in another meta-analysis sug-
gests that the effect of SSBs on cardiometabolic diseases 
appears to be highly mediated by energy. Two, it is pos-
sible that liquid calories from SSBs beverages are poorly 
compensated for by a decrease in total energy intake com-
pared to solid calories, leading to weight gain and down-
stream cardiometabolic diseases. This hypothesis, however, 
remains unproven compared to acute preload trials which 
show that liquid calories were less compensated than solid 
calories [33]. Long-term trials on this subject designed to 
assess whether this lack of compensation results in weight 
gain have been inconclusive [71, 72]. In contrast to SSBs, 
liquid calories from 100% pure fruit juice have also not 
shown reliable associations with diabetes or cardiometa-
bolic diseases [56, 64]. Three, SSBs are easier to measure 
in research studies, e.g. number of cans of sweetened bev-
erages like Coca-Cola can be recalled with precise fidelity, 
which is not the case for other sources of fructose-contain-
ing sugars. The latter are usually estimated from individual 
foods leading to increased measurement error due to the 
imprecise nature of portions and the actual content of sug-
ars. Four, compared to SSBs, others sugar sources include 
nutrient-dense fruits and vegetables as well as whole-grain 
products that contain potential health-enhancing nutrients, 
fibre and phytochemicals. In fact, these sources of sugars 

Fig. 2  Sources of sugars and incident type 2 diabetes. Adapted from 
[68]. Summary estimates (diamonds) were derived from pooled risk 
ratios for comparison of extreme quantiles (the highest level of expo-
sure compared with the lowest level of exposure). The one exception 
was for cakes and cookies, which compared the highest level of expo-

sure with the middle level of exposure; the reference exposure that 
was associated with the lowest risk. Data are expressed as risk ratios 
with 95% CIs. Asterisks indicate significant interstudy heterogeneity 
as assessed by the Cochran Q statistic and quantified by the I2 statis-
tic at a significance level of P < .10. SSBs sugar-sweetened beverages
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have been associated with weight loss and improved meta-
bolic outcomes in large prospective cohort studies [69, 70, 
73] and randomized dietary trials [74, 75] and, as such, 
may balance any harms associated with sugars. Five, SSBs 
might be a marker of an unhealthy lifestyle. Individual 
foods and lifestyle choices do not exist in isolation, and 
an approach that only looks at them individually may be 
inadequate for disentangling complicated interactions 
between different foods and dietary and lifestyle patterns 
in real-world situations. In this regard, it has been shown 
that sugar-sweetened beverage consumers are different 
from those who do not consume sugary drinks; the former 
snack more, consume more calories, smoke more, exercise 
less and have a worse dietary pattern [59, 76, 77]. Such 
lifestyle and dietary factors are generally adjusted for in 
the analyses of prospective cohort studies as they may con-
found the association between sugar-sweetened beverages 
and disease outcomes. However, it is well recognized that 
complete correction of such confounding variables is not 
possible due to residual confounding. Such variables might 
not be measured, measured imprecisely or not adjusted at 
all as the total number of confounders is unknown [78–80]. 
While these important collinear effects between such life-
style factors and SSBs might bias the results in prospec-
tive cohort studies, such collinear effects can be exploited 
to an advantage by taking a larger snapshot using dietary 
patterns.

Analysis of food consumption as dietary patterns offer a 
more comprehensive approach to the relationship between 
diet and disease and as such might shed a light on what 
foods, which might in themselves be associated with dis-
ease, are taken along with SSBs. The Harvard cohorts 
(Nurses’ Health Study, the Nurses’ Health Study II and the 
Health Professionals Follow-up Study) have revealed two 
distinct dietary patterns. One is the Western dietary pattern, 
which is characterized by high intakes of SSBs, processed 
meats, red meats, refined grains, French fries, sweets and 
desserts, and the second is the prudent dietary pattern char-
acterized by high intakes of vegetables, fruit, legumes, fish, 
poultry and whole grains. The Western dietary pattern is 
associated with increased cardiometabolic disease out-
comes that includes weight gain, increased risk of diabetes, 
CHD and mortality resulting from CHD in energy-adjusted 
models [81–83]. In fact, the weight gain associated with 
a Western dietary pattern [83] appears to be greater com-
pared to the weight gain associated with SSBs alone [84, 
85]. Each individual food component of the Western 
dietary pattern also has a greater relative risk of diabetes 
(RR = 2.56–2.93) [86–89] and CHD (RR = 1.46) [90] than 
those reported for SSBs alone (RR = 1.01–1.18, per serv-
ing) [49, 55–60]. Moreover, these effects on bodyweight of 
the Western dietary pattern persist even after adjustment for 
sugar-sweetened beverage intake in studies in which this 

adjustment was made [83, 86] suggesting that the Western 
dietary pattern as a whole is a more important factor con-
tributing to increased energy intake and weight gain, com-
pared to SSBs alone.

There are some important caveats to the clear and con-
sistent relationship between SSBs and cardiometabolic dis-
ease. The associations for SSBs are only significant when 
comparing extreme comparisons, i.e. typically ≥1–2 serv-
ings/day versus none or <1 serving/month, or an increase in 
energy consumption from each additional serving/day. No 
significant associations have been seen at moderate levels 
of intake [49, 59, 61, 62, 91], which are around the mean 
estimated global intake of SSBs 0.58 servings/day [92] or 
approximately 15 g of added sugars/day.

How does a moderate consumption of SSBs contribute 
to the burden of disease at a global level? The recent Global 
Burden of Disease Study used national level data on 67 
measured risk factors for disease including SSB consump-
tion worldwide [93]. The authors estimated global, regional 
and national disease burdens using best available estimates 
of the association of each risk factor with obesity, diabe-
tes mellitus, cardiovascular disease and cancers, and com-
bined it with age-, sex- and cause-specific mortality using 
a comparative risk assessment analytic framework [94]. 
For SSBs, these estimates included both direct effects on 
disease burden but also indirect effects via increased obe-
sity. When looking at the ranking of the top 15 dietary and 
physical activity factors, high intake of SSBs was ranked 
only 12th for its burden on total global mortality and was 
the only risk factor with added sugars [93]. High blood 
pressure, tobacco smoking, household air pollution, diet 
low in fruits and alcohol use were ranked 1–5, respectively, 
as the leading global risk factors for attributable burden of 
disease. In comparison, high intake of SSBs was ranked all 
the way down at number 32nd globally for attributable bur-
den of disease. When counting total estimated deaths, the 
authors found that in 2010, dietary risk accounted for an 
estimated 11.3 million deaths worldwide [93], but SSBs 
only accounted for an estimated 184k deaths (1.6% of total 
deaths attributed to dietary risk) [94]. In only a few coun-
tries SSBs accounted for a much larger share of disease 
burden due to higher average consumption, e.g. Mexico 
had the largest absolute (405 deaths/million) and propor-
tional mortality attributable to SSBs (12.1%), with one of 
the highest mean intakes (2.6 servings/day), but such a high 
intake is an exception and not the norm across the globe as 
90 per cent of countries had an average SSB intake of <1 
serving/day [92]. USA also had a relatively high average 
consumption of SSBs (1.3 servings/day; 42.9 g/day added 
sugars) but that contributed only 2.3% of proportional mor-
tality [94]. This study underscored that compared to other 
risk factors, SSBs play a relatively minor role in global dis-
ease burden.



S31Eur J Nutr (2016) 55 (Suppl 2):S25–S43 

1 3

If we take a look at the potential risk of individual dis-
eases, the effect sizes associated with SSBs tend to be rela-
tively modest. For example, pooled relative risk (RR) for 
SSBs with cardiometabolic diseases including metabolic 
syndrome (RR = 1.20, highest vs. lowest quantile) [57], 
diabetes (RR = 1.18, per serving increase) [56], hyper-
tension (RR = 1.12, highest vs. lowest quantile) [58], 
CHD (RR = 1.17, highest vs. lowest quantile) [60], stroke 
(RR = 1.06, per serving increase) [95] is relatively modest 
and did not exceed 1.20. Focusing on type 2 diabetes, the risk 
estimate of SSBs intake is similar to or even lower than those 
of other established dietary risk factors, processed meats 
(RR = 1.51, 100 g/day) [96], red meat (RR = 1.19, 50 g/
day) [96, 97], French fries (RR = 1.16, two servings/week) 
[98]; high glycaemic index (RR = 1.33, highest vs. lowest 
quantile) [99], fried food (RR = 1.55, <1 vs. >7 time a week) 
[100] and potatoes (RR = 1.18, one serving/day) [98]. When 
we look beyond dietary factors, the association of SSBs with 
type 2 diabetes pales in comparison. The association of body 
mass index (lowest versus highest levels) with type 2 diabe-
tes ranges from 10 to 30 times [101], which is similar to risk 
levels associated with long-term smoking and lung cancer 
[102]. As these risk ratios are several fold higher than the risk 
estimates seen with SSB intake, the analogy that SSBs are to 
obesity and diabetes as cigarette smoking to lung cancer [27, 
103, 104] does not stand. Thus, the evidence suggests that 
similar to other dietary factors, the association of SSBs with 
diabetes is modest and it cannot be singled out and put in the 
bracket of other non-dietary factors.

The relatively modest risk ratios of the association of per 
serving increase in SSB intake with cardiometabolic dis-
eases begs the question, if other sources of calories in the 
diet are more important than SSBs? A pooled analyses of 
the three Harvard cohorts by Mozaffarian et al. [105] found 
that the weight gain observed for every 4 years of follow-up 
for increasing one serving of sugary beverages was smaller 
than or in range of increasing one serving of several other 
foods such as French fries, potato chips, unprocessed meat, 
processed meat, trans fat or boiled, baked or mashed pota-
toes when not adjusted for energy (see Fig. 3). It is likely 
that extra calories are driving this association of SSBs with 
weight gain, which suggests that SSBs provide fewer calo-
ries than the above foods.

Overall, the evidence we presented suggests that SSBs 
have comparatively small effect sizes seen only at the 
extremes of intake, which makes them an important source 
of excess sugary calories but not something that unusually 
contributes to increased cardiometabolic risk compared to 
many other aspects of the diet when we consider their mean 
intake globally.

Evidence from controlled trials

High-quality evidence from randomized and non-RCTs 
offers the best protection from bias as these control for 
confounding factors while allowing for the isolation of the 
effect of interest. The major limitation of nutrition trials 
of dietary sugars is the lack of clinical outcomes as these 
require long-term follow-up over years and most nutrition 
trials last only a few weeks. However, risk factors or sur-
rogate outcomes measured at intermediate times can be 
explored with good precision, thereby providing insight 
into processes that might lead to disease.

Fig. 3  Bodyweight changes (kg) over a 4-year period associated 
with an increase in the consumption of different food items. Using 
data from the Nurses’ Health Study, the Nurses’ Health Study II and 
the Health Professionals Follow-up Study as reported by Mozaffarian 
et al. [105]. Increased consumption is based on servings/day for all 
items except trans fat (per cent total energy) and fried foods (serv-
ings/week). Data represent pooled mean changes with 95% confi-
dence intervals adjusted for age, baseline body mass index at the start 
of each 4-year interval, sleep duration and changes in physical activ-
ity, smoking, alcohol use, television watching and each additional 
food item
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Fructose and cardiometabolic risk factors

We can use two types of trial designs together to disen-
tangle the direct association of various risk factors with 
fructose intake from the energy it provides. One, substitu-
tion trials, in which comparisons are matched for energy, 
with fructose, in liquid or mixed format, is substituted for 
other sources of carbohydrates in the diet. The substitution 
trials can provide information on the usefulness of low-
sugar foods on shelves, which are usually backfilled with 
other carbohydrates including starch and maltodextrins, so 
in many cases the total amount of calories do not change 
[106]. The second type of trials is addition trials, in which 

comparisons are supplemented with excess energy from 
fructose compared with the same diet alone without excess 
energy, i.e. they are hypercaloric. These trials together pro-
vide information on whether it is the excess energy from 
fructose that leads to adverse effects.

In a Canadian Institute of Health Research (CIHR) 
funded series of systematic reviews and meta-analyses of 
controlled trials consisting of more than 50 trials and an 
excess of 1000 subjects, we examined the effect of fructose 
on various cardiometabolic risk factors when it was pro-
vided in isocaloric substitution for other carbohydrates (see 
Fig. 4). In the pooled analysis of the substitution trials we 
found no adverse effect on body weight [107], fasting lipids 

Fig. 4  Substitution trials. The meta-analyses are of isocaloric substi-
tution trials, in which fructose was exchanged for other carbohydrate 
sources under energy-matched conditions. Summary estimates (dia-
monds) were derived from pooled trial-level data. To allow the sum-
mary estimates for each endpoint to be displayed on the same axis, 
mean differences were transformed to standardized mean differences 
(SMDs). Pseudo-95% CIs for each transformed SMD were derived 
directly from the original mean difference and 95% CI. The scales 
were also flipped for high-density lipoprotein cholesterol (HDL-
C), whole-body insulin sensitivity and hepatic insulin sensitivity so 
that the direction of the effect for benefit or harm was in the same 
direction as that for the other endpoints. Asterisks indicate signifi-

cant interstudy heterogeneity as assessed by the Cochran Q statistic 
and quantified by the I2 statistic at a significance level of P < .10 (the 
higher significance level was chosen owing to the poor sensitivity 
of the test). ALT alanine aminotransferase, Apo-B apolipoprotein B, 
DBP diastolic blood pressure, FBG fasting blood glucose, FBI fasting 
blood insulin, GBP glycated blood proteins, HOMA-IR homoeostatic 
model assessment-insulin resistance, IHCL intrahepatocellular lipid, 
LDL-C low-density lipoprotein cholesterol, MAP mean arterial pres-
sure, SBP systolic blood pressure, TG triglycerides, No. total number 
of participants included in the meta-analysis of the controlled dietary 
trials
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[108, 109], blood pressure [110], uric acid concentration 
[111], glycaemic control and insulin sensitivity [112, 113], 
postprandial lipids [114] and markers of non-alcoholic fatty 
liver disease (NAFLD) [115] in individuals with varying 
metabolic phenotypes. In the above studies, the dose of 
fructose ranged from a moderate 22.5 to 300 g/day with the 
follow-up ranging from one to 52 weeks. In these studies, 
fructose shows a slight benefit for glycaemic control and 
blood pressure when isocalorically exchanged for other 
sources of carbohydrates [110, 112, 113]. The improve-
ment in glycaemic control as assessed by glycated blood 
proteins was equivalent to 0.57% reduction in haemoglobin 
A1c [112, 113], which is at the lower limit of efficacy of 
oral antihyperglycaemic agents of 0.5% [116] and exceeds 
the US Food and Drug Administration’s threshold of 0.3% 
for the development of new oral antihyperglycaemic agents 
both in individuals with and without diabetes [117]. Fur-
thermore, in a previous meta-analysis, the effect of fruc-
tose on HbA1c has been found to be dose dependent [118] 
which gives credence to the above results. In short, these 
substitution studies demonstrate that if we match calories 
with other carbohydrates, fructose is not associated with an 
increased harm for cardiometabolic parameters and may 
even be beneficial in low doses.

Conversely, the adverse effect of fructose in isoca-
loric trials is seen only under certain conditions. The dose 
threshold of harm for the effect of fructose on fasting tri-
glycerides has been reported as >60 g/day in people with 
type 2 diabetes and >100 g/day in those with mixed pheno-
types, and a threshold of >50 g/day for postprandial triglyc-
erides in those with mixed phenotypes [107, 118]. From 
pooled and individual controlled trials, the only condition 
in which isocaloric comparisons of fructose were found to 
be associated with increase in both fasting and postprandial 
triglycerides was when very high doses (>100 g/day) of 
fructose were provided [119, 120]. However, these findings 
have not been reproduced in dose–response and subgroup 
analyses in updated systematic reviews and meta-analyses 
[108, 114].

Why would fructose show benefit on HbA1c or glycated 
haemoglobin in low doses? Fructose might be needed in 
smaller amounts as it is sweeter than glucose. The relative 
sweetness in a 10% solution for fructose is 117, glucose 
is 65, and sucrose is 100 [121]. Although, in nature, fruc-
tose is always present along with glucose, a median higher 
sweetness with fructose compared to glucose would prob-
ably not lead to larger intakes. Moreover, biological evi-
dence suggests that fructose might assist in the metabolic 
handling of glucose. Fructose has a very low glycaemic 
index of 14 compared to glucose (=100) and sucrose (=65) 
[122] which might lower HbA1c levels. However, such 
an affect is not seen at very high dose of fructose, where 
it impairs insulin sensitivity driving up HbA1c [118]. The 

low glycaemic index of fructose also led to an early inter-
est for its role in diabetes management. Emerging evidence 
also suggests that low-dose fructose (approx. 10 g/meal—
equal to one apple) may benefit glycaemic control through 
its metabolite fructose-1-phosphate by inducing glucoki-
nase activity [123]. In vitro studies in cultured hepatocytes 
demonstrate that fructose-1-P, a fructose metabolite, dis-
places fructose-6-P from the regulatory glucokinase-bind-
ing protein in the nucleus, causing the translocation of glu-
cokinase to the cytosol. Glucosidase in turn increases the 
phosphorylation of incoming glucose and suppression of 
endogenous glucose production [124–127]. This catalytic 
effect of fructose has been reported in vivo also, where a 
reduction in hepatic glucose production under hyperglycae-
mic clamp conditions was seen in patients with type 2 dia-
betes and an increase in glycogen synthesis by carbon-13 
nuclear magnetic resonance spectroscopy under euglycae-
mic clamp conditions was found in participants without 
diabetes [123, 128]. Similarly, these catalytic effects are 
also seen acute clinical studies. Catalytic doses of fructose 
at 7.5–10 g have shown to reduce postprandial glycaemic 
response to high glycaemic index meals like oral glucose 
or mashed potatoes in healthy participants [129, 130] and 
those with type 2 diabetes [131]. These mechanisms also 
appear to be sustainable over long-term intake of fructose. 
Our systematic review and meta-analysis of controlled tri-
als on the effect of small catalytic fructose doses (≤36 g/
day) in exchange for starch showed similar glycaemic ben-
efits as those in higher doses without any adverse effects 
on metabolic control over 1–52 weeks of follow-up [113]. 
Furthermore, in our re-analysis of glycaemic control trials, 
fructose-containing sugars showed harm in hypercaloric 
trials but demonstrated a strong protective effect in isoca-
loric trials [132]. These findings suggest that the metabolic 
effect of sugars should be considered separately from their 
caloric effects.

Similar to rodent studies of overfeeding where we see a 
consistent signal for harm [34], in humans a signal for harm 
is found in hypercaloric addition trials in which fructose is 
added to provide excess calories in the diet and compared 
to the same diet without the excess calories. Systematic 
reviews and meta-analysis of such trials have shown that 
fructose intake providing excess calories is associated with 
weight gain [107], increase in fasting [108, 109] and post-
prandial triglyceride levels [114], fasting glucose levels and 
insulin resistance [112, 113], uric acid concentrations [111] 
and markers of NAFLD [115] (see Fig. 5). The inability of 
fructose to demonstrate the same adverse associations in 
isocaloric substitution for other carbohydrates suggests that 
the primary determinant of these observed harms is excess 
calories rather than any unusual metabolic or endocrine 
response to fructose. Thus, the adverse effects observed 
under conditions of overfeeding appear to be no more 
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mediated by fructose than by other sources of carbohydrate 
used to replace it. Also, that these adverse effects appear to 
be reversible by exercise suggests that such adverse effects 
of fructose overfeeding may not be applicable to those who 
engage in regular physical activity [120, 133].

Fructose‑containing sugars and weight

A criticism that can be levelled on the systematic reviews 
and meta-analyses of controlled trials of fructose described 
above is that in diet pure fructose is not consumed in iso-
lation but is commonly consumed together with glucose, 
either in form of HFCS or honey, or as part of the sucrose 
molecule. In other words, it can be argued that the above 

studies do not represent real-world situations for the vast 
majority of people. For this reason, we investigated the tri-
als of fructose-containing sugars (HFCS, sucrose, honey, 
etc.) found normally in the diet and examined their effects 
on cardiometabolic outcomes. To allow the direct effects of 
fructose-containing sugars to be disentangled from calories, 
four types of study designs can be described: (1) substitu-
tion trials, in which fructose-containing sugars added to 
foods and beverages are compared with other macronutri-
ent sources under energy-matched conditions; (2) addition 
trials, in which fructose-containing sugars supplemented 
a diet with excess energy compared to the same diet sup-
plemented with the equivalent amounts of non-caloric food 
and beverages or the same diet alone without the excess 
energy from fructose-containing sugars; (3) subtraction 

Fig. 5  Addition trials. The meta-analyses are of hypercaloric addi-
tion trials, in which excess calories from fructose were added to a diet 
compared with the same diet without the excess calories. Summary 
estimates (diamonds) were derived from pooled trial-level data. To 
allow the summary estimates for each endpoint to be displayed on the 
same axis, mean differences were transformed to standardized mean 
differences (SMDs). Pseudo-95% CIs for each transformed SMD 
were derived directly from the original mean difference and 95% CI. 
The scales were also flipped for high-density lipoprotein cholesterol 
(HDL-C), whole-body insulin sensitivity and hepatic insulin sensitiv-
ity so that the direction of the effect for benefit or harm was in the 
same direction as that for the other endpoints. Asterisks indicate sig-

nificant interstudy heterogeneity as assessed by the Cochran Q statis-
tic and quantified by the I2 statistic at a significance level of P < .10 
(the higher significance level was chosen owing to the poor sensitivity 
of the test). ALT alanine aminotransferase, Apo-B apolipoprotein B, 
DBP diastolic blood pressure, FBG fasting blood glucose, FBI fasting 
blood insulin, GBP glycated blood proteins, HOMA-IR homoeostatic 
model assessment-insulin resistance, IHCL intrahepatocellular lipid, 
LDL-C low-density lipoprotein cholesterol, MAP mean arterial pres-
sure, SBP systolic blood pressure, TG triglycerides, No. total number 
of participants included in the meta-analysis of the controlled dietary 
trials
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trials, in which energy from fructose-containing sugars 
was reduced through displacement with water and/or no-
calorie or low-calorie sweeteners or by eliminating it alto-
gether from the background diet; and (4) ad libitum trials, 
in which energy from fructose-containing sugars was freely 
replaced with other foods like complex carbohydrates and 
fat without any strict control of either the study foods or the 
background diet.

Two separate systematic reviews and meta-analyses of 
substitution trials showed no difference for fructose-con-
taining sugars on bodyweight when they were replaced iso-
calorically with other macronutrient sources (usually starch 
or other sugars) (see Fig. 6). The first one was a WHO-
commissioned systematic review and meta-analysis of 13 
RCTs involving 144 adults [49]. It found that total fruc-
tose-containing added sugars (predominantly sucrose) did 
not affect bodyweight when substituted for other sources 
of carbohydrates (predominantly starch). Our own pooled 
analysis of 31 randomized and non-randomized controlled 
dietary trials assessing the effect of consumption of chronic 
fructose-containing sugars in substitution for other sources 
of carbohydrates (mainly starch) under energy-matched 

conditions did not support an adverse effect of fructose 
on body weight in 637 adults [107]. Similar effects per-
sisted even when fructose was provided in liquid form and 
also under condition of positive energy balance. When we 
restricted the analysis to five ‘substitution’ trials with a pos-
itive energy balance but energy matched between the arms, 
there was still no evidence that fructose affects bodyweight 
differently compared to other carbohydrates.

A follow-up systematic review and meta-analysis by 
the same WHO group showed mixed effects of fructose-
containing added sugars on other cardiometabolic risk fac-
tors [134]. In this paper the authors showed that in isoca-
loric comparisons with other sources of macronutrients, 
mainly starch, the fructose-containing sugars had benefi-
cial effects on high-density lipoprotein cholesterol (HDL-
C) but adverse effects on triglyceride levels, low-density 
lipoprotein cholesterol (LDL-C) and total cholesterol lev-
els. Fructose-containing sugars had no effect on systolic or 
diastolic blood pressure. While the paper findings present 
a good case against fructose-containing sugars, there are 
issues which limit their generalization. One, the author’s 
definition of sugars included non-fructose-containing 

Fig. 6  Fructose-containing sugars and weight change in controlled 
dietary trials. Forest plots of summary estimates from recent meta-
analyses of the effect of different fructose-containing sugars interven-
tions on indices of body weight in controlled dietary trials involving 
children and adults. The meta-analyses were grouped broadly based 
on the interventions in question: isocaloric sugar substitution inter-
ventions, in which sugars were exchanged for other carbohydrate 
sources under energy-matched conditions; sugar supplementation 
interventions, in which sugars supplement background diets provid-
ing excess energy compared with the background diets alone with-
out the excess energy; and sugar reduction interventions, in which 
excess from sugars is reduced in background diets compared with the 
background diets still containing the sugars. Indices of body weight 
included body weight in Sievenpiper et al. [107], Kaiser et al. [140] 

and Te Morenga et al. [49]. For isocaloric sugar substitution only; 
body fatness in Te Morenga et al. [49] for all other comparisons; and 
BMI z scores in Malik et al. [55]. Summary estimates (diamonds) 
were derived from pooled trial-level data. To allow the summary esti-
mates for each endpoint to be displayed on the same axis, mean dif-
ferences (MDs) were transformed to standardized means differences 
(SMDs). Pseudo-95% confidence intervals (CI) for each transformed 
SMD were derived directly from the original MD and 95% CI. Aster-
isks indicate significant interstudy heterogeneity as assessed by the 
Cochran Q statistic and quantified by the I2-statistic at a significance 
level of P < .10. SSBs sugar-sweetened beverages, No. total number 
of participants included in the meta-analysis of the controlled dietary 
trials
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sugars including high glycaemic index sugars like glucose 
and maltose. Two, it is possible that the type of analysis 
performed did not allow separation of the effect of fructose 
from calories, as almost 40 per cent of the studies in peo-
ple who consumed ad libitum diets had no strict control of 
energy intake. Three, the isocaloric trials were not strictly 
isocaloric as the trials did not include adequate measures of 
compliance. Four, there was significant unexplained hetero-
geneity in the trials and imprecision of the summary pooled 
estimates of most endpoints. Conversely, our most recently 
concluded systematic review and meta-analysis of con-
trolled trials found that fructose-containing sugars in iso-
caloric comparisons with other sources of macronutrients 
(mainly starch) had a beneficial effect on HbA1c levels and 
no effect on fasting glucose or insulin levels [132]. There-
fore, with the above mixed signals, it is difficult to draw 
strong inferences about harm or benefit for fructose-con-
taining sugars when isocalorically exchanged with other 
carbohydrates.

How does fructose-containing sugars fare against macro-
nutrients other than carbohydrates, e.g. fat and protein? 
Most studies comparing fructose-containing sugars with 
fat and protein used SSBs as the form of dietary sugars. 
Looking at weight gain, no difference in body weight or 
total body fat was seen when SSBs were substituted isoca-
lorically for milk in a trial in children for 16 months [135] 
and in adults for 6 months [136]. The adult trial showed 
that high SSB consumption (1 l/day providing 106 g/day 
in added sugars) increased liver and visceral fat composi-
tion, total cholesterol and triglycerides which was not seen 
in calorically equivalent intake of milk [136]; in fact, milk 
was beneficial in reducing blood pressure. It should be 
noted that the dose of added sugars consumed from SSBs 
in this trial was at more than twice the average US popu-
lation intake (which is 1.3 servings or 429 ml/day) [94]. 
Another 3-week trial in pre-diabetic adults of the substitu-
tion of SSBs with dairy milk also did not show any differ-
ence in weight [137]. Two studies under a negative energy 
balance comparing isocaloric substitutions found similar 
reductions in bodyweight for comparisons of sucrose ver-
sus protein or fat [138, 139]. Thus, the overall picture from 
substitution trials indicates that fructose-containing sugars 
do not appear to behave differently from other sources of 
macronutrients in contributing to weight gain and that there 
is no clear evidence for cardiometabolic harms as results 
are not consistent across studies.

Compared to substitution trials, consistent signal of 
harm was seen in the addition trials. Four systematic 
reviews and meta-analyses found that supplementing the 
diet with excess energy from fructose-containing sugars 
resulted in significant weight gain when compared with 
the same diets alone without the excess energy (see Fig. 6). 
The first one was the WHO-commissioned systematic 

review and meta-analysis of ten RCTs involving 382 adults 
[49]. The next two systematic reviews and meta-analyses 
were based upon SSB beverages intake. The study by 
Kaiser et al. [140] included seven RCTs with 565 adults, 
and the study by Malik et al. [55] included seven RCTs 
in 292 adults. Both studies found that supplementing diet 
with fructose-containing sugars in form of SSBs, provid-
ing from 150 to 530 kcal in excess calories over a period 
of 3 weeks–24 months, resulted in significant weight gain. 
Unsurprisingly, the weight gain achieved was proportional 
to the degree of excess calories added to the diet with some 
compensation [140]. In our own systematic review and 
meta-analysis of controlled trials, we found that fructose-
containing sugars supplementing diets with excess calories, 
when compared with same diets without the excess calo-
ries, showed an adverse effect on fasting insulin but not on 
HbA1c or fasting glucose levels [132].

In the pooled analyses of subtraction trials in which cal-
ories in the diet provided by fructose-containing sugars (as 
added sugars or SSBs) are removed and replaced with water 
or non-caloric beverages, results have not shown a consist-
ent associated with weight loss [49, 55, 140]. An observed 
benefit on weight was seen only in adults in a pooled anal-
ysis of five trials comprising of 2968 participants [49], in 
a meta-analysis of seven trials involving 2637 participants 
when restricted to overweight/obese individuals [140] 
and in a meta-analysis of 15 trials with 1591 participants 
using low-calorie sweeteners [141]. However, such benefit 
was not seen in two systematic review and meta-analyses 
restricted to children [49, 55], though the study by Malik 
et al. [55] involving five trials with 1298 participants did 
show a potential benefit of subtraction trials when lim-
ited to overweight and obese children only. Interestingly, 
the interventions in the subtraction trials were more mod-
est than those in the addition trials, meaning the caloric 
difference between intervention and control arm was less 
and more representative of real-world intakes. Such mod-
est effects and also the inconsistency in the results might 
be explained by a compensatory effect, in which people 
will compensate for a decrease of energy from one source 
by increasing intake of other foods or exert less energy to 
maintain a neutral energy balance [142]. Therefore, sub-
stantial weight loss by reducing SSB intake and thus sugars 
might be difficult in free-living conditions [140]. This was 
demonstrated by the Choose Healthy Options Consciously 
Everyday (CHOICE) trial, where the weight loss from 
strategy of reducing calories from SSBs did not differ from 
general weight loss advice at 6 months [143].

Few randomized trials have assessed the effect of dis-
placing calories from sugars using no- or low-calorie 
sweeteners or water on cardiometabolic risk factors. The 
systematic review and meta-analysis by WHO group [134] 
of 39 trials only identified one subtraction trial, which used 
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ad libitum sugar-free diet as the control, and it did not show 
an effect on total cholesterol, HDL-C or triglyceride levels 
in 32 hypertriglyceridemic men [144]. Our own systematic 
review and meta-analysis of five studies in 591 participants 
did not show an effect of reducing calories from fructose-
containing sugars on HbA1c, fasting glucose or fasting 
insulin levels [132].

Ad libitum trials reflect real-world patterns to assess the 
effect of replacing fructose-containing sugars with other 
nutrients on weight gain and downstream cardiometabolic 
risk beyond the calories they provide. In these studies, 
fructose-containing sugars are freely replaced with other 
sources of energy in the diet without any requirement of 
a predetermined load nor a strict control of replacement 
or the background diet. We found very few studies with 
such design. The largest and the longest duration ad libi-
tum trial was the CArbohydrate Ratio Management in 
European National Diets (CARMEN) study [145]. It com-
pared ad libitum high-sugar diet (~55% energy carbohy-
drate, 29% energy sugars), an ad libitum high complex-
carbohydrate diet (~51% energy carbohydrate, 19% energy 
sugars) and an ad libitum higher fat control diet (~46% 
energy carbohydrate, 21% energy sugars) in 398 mod-
erately obese adults over 6 months. The weight loss and 
reduction in body fat were no different between ad libitum 
high-fructose-containing sugars diet and ad libitum high 
complex-carbohydrate diet, although there was a tendency 
for greater weight loss on the ad libitum complex-carbohy-
drate diet (−0.9 vs. −1.8 kg), possibly due to higher fibre 
and protein content. Another randomized study of 46 par-
ticipants with metabolic syndrome following the same pro-
tocol over 6 months showed similar results [146]. In this 
study, those on the ad libitum high-fructose-containing 
sugars diet lost considerably more weight than those on 
the ad libitum higher fat control diet (−0.28 vs. +1.03 kg), 
although those on the high complex-carbohydrate diet 
lost the most weight (−4.25 kg). A third randomized trial 
in 20 normal-weight women followed over 2 weeks had a 
greater weight loss and lower plasma lipids in starch trial 
versus fat or sucrose arm [147]. Our own systematic review 
and meta-analysis of controlled trials showed no effect on 
HbA1c, fasting glucose or fasting insulin levels irrespective 
of comparator [132]. In short, evidence suggests that, under 
free-living conditions, it is possible to lose weight follow-
ing an ad libitum diet where fructose-containing sugars are 
replaced with complex-carbohydrate diets that are higher in 
protein and fibre, but there might not be any clear advan-
tages if replaced with other sources of energy especially 
from fat. However, the effect on other cardiometabolic 
markers is not clear and more evidence is needed.

Should we target sugars

A lesson we can learn from the fat paradigm is that there 
can be unintended consequences of focusing singly on 
one nutrient. When saturated fat was deemed harmful, the 
industry responded by producing low-fat products, with 
no resultant appreciable calorie change, as in these prod-
ucts calories from fat were replaced with calories from 
other sources, e.g. starches and other sugars like maltodex-
trins [7]. The public perception changed as ‘low-fat’ prod-
ucts were deemed ‘healthy’, and a concomitant increase in 
availability on the supermarket shelf likely led to the over-
consumption of such ‘low-fat’ products [148]. Not surpris-
ingly, the expected reduction in cardiometabolic disease 
with the ‘low-fat’ food was not seen, and instead, we saw 
an unprecedented increase in incidence of overweight/obe-
sity [149] and diabetes [150].

If a similar approach is taken by the industry who pro-
ducing ‘low-sugar’ food products, a replay of the above 
scenario looks likely. Furthermore, the unique functional 
properties of fructose-containing sugars mean that their 
replacement is not as easy as it sounds. The functions 
provided in food products by sugars are related to their 
sensory (sweetness, taste and aroma, texture and appear-
ance), physical (crystallization, viscosity, osmotic pres-
sure, hygroscopicity, consistency/bulk, grain size and 
distribution), microbial (preservation and fermentation) 
and chemical (inversion and caramelization) properties 
[151]. Therefore, reducing or replacing sugar means one 
has to replace sugars with several ingredients in order to 
fulfil the above properties which, in many cases, may not 
result in calorie reduction [106]. Most commonly sugars 
are replaced with bulking agents, and most of these bulk-
ing agents also provide energy as most are carbohydrate-
based, e.g. isomaltulose, sugar alcohols, maltodextrins 
and starch hydrolysates, and some are fat based. Thus, 
the calorie reduction in ‘low-sugar’ products might be 
negligible or in some cases might even increase [106]. 
Another side effect of a drastic reduction in sugars is 
that even good sources of sugars might be targeted like 
whole grains. For example, the calories per serving are 
the same (110 kcal/30 g) in Frosted Flakes and Reduced 
Sugar Frosted Flakes despite the total sugar content 
being 11 and versus 8 g, respectively. Despite appearing 
paradoxical, the replacement of sugars with refined corn 
starch means that glycaemic index of the flake product 
increases from 55 to 75 [152], and such an increase of GI 
at a whole diet level can potentially be associated with 
higher rates of diabetes [153]. Evidence from National 
Health and Nutrition Examination Survey (NHANES) 
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data suggests that while at the population level in USA, 
consumption of added sugars has decreased in past two 
decades, there has been an increase in calories from other 
sources including other carbohydrates, protein and fats—
such that average daily calories have not reduced [154].

Summary

Despite the continuing concern regarding fructose’s unique 
metabolic effects, which stems from low-quality ecologi-
cal studies, animal models and select human studies, the 
highest level of evidence from systematic review and meta-
analysis does not support a direct causal relationship with 
cardiometabolic disease. Using the totality of the highest 
quality evidence from controlled feeding trials, we dem-
onstrate that fructose-containing sugars can lead to weight 
gain, increase in cardiometabolic risk factors and disease 
only if it provides the excess calories. When the calories 
are matched, fructose-containing sugars do not appear to 
cause weight gain compared to other forms of macronutri-
ents including complex carbohydrates, fats and protein, and 
in low doses fructose might even show benefit. Prospec-
tive cohort studies, which provide the strongest observa-
tional evidence, have shown an association between fruc-
tose-containing sugars and cardiometabolic risk including 
weight gain, cardiovascular disease outcomes and diabetes 
only when restricted to SSBs and not for sugars from other 
sources. In fact, the harmful effect of SSBs is likely driven 
by a collinearity with an unhealthy lifestyle as SSB drink-
ers consume more calories, exercise less, smoke more and 
have a poor dietary pattern.

In summary, there is nothing unique about the sugar, fruc-
tose. It is harmful when in excess but potentially beneficial 
when taken in small amounts—providing evidence that it is 
the excess energy that is causing harm and not some unique 
metabolic effect. Still, the potential for overconsumption of 
sugars in form of sugary foods and drinks is substantial, and 
targeting added sugars as a source of excess calories appears 
to be a prudent strategy. However, sugar content should not 
be seen as the sole determinant of a healthy diet. There are 
many other factors in the diet—some providing excess calo-
ries while others provide beneficial nutrients. We should 
consider the whole diet for health benefits compared to 
just focusing on one nutrient. In this regard, improvements 
in dietary patterns appear to have the greatest influence on 
weight gain and cardiometabolic risk and represent the best 
opportunity for successful intervention.
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