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Abstract. Correlation and correlation-based measures (e.g., the coefficient of 
determination) have been widely used to evaluate the "goodness-of-fit" of hydrologic and 
hydroclimatic models. These measures are oversensitive to extreme values (outliers) and 
are insensitive to additive and proportional differences between model predictions and 
observations. Because of these limitations, correlation-based measures can indicate that a 
model is a good predictor, even when it is not. In this paper, useful alternative goodness- 
of-fit or relative error measures (including the coefficient of efficiency and the index of 
agreement) that overcome many of the limitations of correlation-based measures are 
discussed. Modifications to these statistics to aid in interpretation are presented. It is 
concluded that correlation and correlation-based measures should not be used to assess 

the goodness-of-fit of a hydrologic or hydroclimatic model and that additional evaluation 
measures (such as summary statistics and absolute error measures) should supplement 
model evaluation tools. 

1. Introduction 

A primary goal of modeling physical processes in the atmo- 
spheric and hydrologic sciences is the prediction of a variable 
in time and/or space from a given set of inputs. How well a 
model fits the observed data (referred to as model evaluation, 
or sometimes as model validation) usually is determined by 
pairwise comparisons of model-simulated (or model-pre- 
dicted) values with observations. Quantitative assessments of 
the degree to which the model simulations match the obser- 
vations are used to provide an evaluation of the model's pre- 
dictive abilities. 

Frequently, evaluations of model performance utilize a 
number of statistics and techniques. Usually included in these 
tools are "goodness-of-fit" or relative error measures (bound- 
ed statistics, usually between 0.0 and 1.0) to assess the ability of 
a model to simulate reality. Often these statistics are based on 
the familiar Pearson's product-moment correlation coefficient 
(r) or its square, the coefficient of determination (R2). These 
two statistics describe the degree of collinearity between the 
observed and model-simulated variates. They are almost al- 
ways discussed in basic statistics texts and, consequently, are 
familiar to virtually all scientists. Unfortunately, both r and R 2 
suffer from limitations that make them poor measures of 
model performance. Although these statistics continue to be 
used to determine how well a model simulates the observed 

data, they nevertheless provide a biased view of the efficacy of 
a model [}tSllmott, 1981; Willmott et al., 1985; Kessler and Neas, 
1994; Legates and Davis, 1997]. 

As knowledge of physical processes has increased, models 
have become more complex. Often these models include nu- 
merous parameters that are calibrated through optimization 
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procedures, where a range in model parameters is sampled 
until the differences between the observed and model- 

simulated data are minimized [Nash and Sutcliffe, 1970; Song 
and James, 1991; Hay, 1998]. Stochastic calibration procedures 
are usually employed, which limits graphical analyses of scat- 
terplots, for example, so that statistical analyses must be solely 
used. Consequently, statistics other than r and R 2 have been 
developed to describe better the degree of association between 
the observed and model-simulated data. The objectives of this 
paper are to (1) examine various goodness-of-fit measures and 
to identi• limitations associated with each, and (2) suggest 
viable alternative measures for the evaluation of hydrologic 
and hydroclimatic models. 

2. Statistics for Evaluation of Hydrologic 
and Hydroclimatic Models 

In this paper, three basic methods for model evaluation will 
be discussed: the coefficient of determination R •, the coeffi- 
cient of efficiency E [Nash and Sutcliffe, 1970], and the index 
of agreement d [Willmort et al., 1985]. In general, this paper 
addresses comparisons of model-simulated data (P) with the 
observed data (O) for the same set of conditions (i.e., a pair- 
wise comparison) over a given time period divided into N time 
increments that can be of arbitrary duration (e.g., monthly or 
daily time steps). 

2.1. Coefficient of Determination R z 

The coefficient of determination is the square of the Pear- 
son's product-moment correlation coefficient (i.e., R • = r •) 
and describes the proportion of the total variance in the ob- 
served data that can be explained by the model. It ranges from 
0.0 to 1.0, with higher values indicating better agreement, and 
is given by 
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N 2 

• (0,- O)(P,- P) 
R2 = i=1 

• (Oi- 0) 2 (Pi- p)2 
i=1 '= 

where the overbar denotes the mean for the entire time period 
of the evaluation. Note, however, that the coefficient of deter- 
mination is limited in that it standardizes for differences be- 

tween .the observed and predicted means and variances since it 
only evaluates linear relationships between the variables. It can 
be easily demonstrated that if Pi -- (AOi + B) for any 
nonzero value of A and any value of B, then R2 = 1.0. Thus 
R 2 is insensitive to additive and proportional differences be- 
tween the model simulations and observations [see Willmott, 
1984]. Large values of R 2 can be obtained even when the 
model-simulated values differ considerably in magnitude (i.e., 
values of B that differ significantly from 0.0) and variability 
(i.e., values of A that differ significantly from 1.0). Clearly, in 
such cases, a model would exhibit serious flaws that should 
preclude the attribution of a "perfect" designation. These lim- 
itations in the coefficient of determination and other correla- 

tion-based measures are well documented [cf. Willmott, 1981; 
Moore, 1991; Kessler and Neas, 1994; Legates and Davis, 1997], 
although such measures still have been used recently to pro- 
vide, for example., an assessment of climate change detection 
[e.g., Santer et al., 1995; Hegerl et al., 1996; Santer et al., 1996] 
and hydrological and hydroclimatological applications (see 
McCuen and Snyder [1975] and Willmott [1984] for some ex- 
amples). 

In addition to this obvious limitation of correlation-based 

measures, Legates and Davis [1997] illustrate that correlation- 
based measures are more sensitive to outliers than to obser- 

vations near the mean [see also Moore, 1991]. Statistical texts 
frequently illustrate that the correlation can be greatly influ- 
enced by the relationship between the two variables for one 
extreme outlier. This oversensitivity to outliers leads to a bias 
toward the extreme events if correlation-based measures are 

employed in model evaluation. A model that can follow the 
observed data during extreme events will have an artificially 
higher value of R 2, which may obscure the true relationship 
between the model-simulated and observed data over most of 

the remainder of the domain. Legates and Davis [1997] illus- 
trate further limitations in correlation-based statistics when 

derived data (e.g., differences from a standardized mean) are 
used. 

McCuen and Snyder [1975] recognized these limitations in 
correlation-based measures and developed an adjusting factor 
equal to 

N N ] -0.5 • (Oi- 0) 2 • (Pi- •})-2 . 
i=1 i=1 

The correlation between the observed and predicted time se- 
ries is multiplied by this adjusting factor to account for differ- 
ences in the observed and predicted standard deviations. This 
adjustment, however, does not account for differences in the 
mean of the two time series and assumes [see McCuen and 
Snyder, 1975] that the observed variance is less than th e model- 
predicted variance. If, in fact, the model-predicted variance 
were greater, then the application of the McCuen and Snyder 

adjusting factor would result in an increase in the correlation, 
possibly causing it to exceed 1.0 in extreme cases. Conse- 
quently, we do not advocate the use of such adjusting factors. 

It should be noted that nonparametric or rank correlation 
methods also exist (e.g., Spearman's rho or Kendall's tau). As 
nonparametric statistics, they are less sensitive to outliers in 
the data and generally provide a more robust characterization 
of the correlation between observed and predicted values. Un- 
fortunately, rank correlation measures are associated with a 
loss of information as interval/ratio data are converted to or- 

dinal (ranked) form [see Burr and Barber, 1996], and, like their 
parametric counterparts, they are not sensitive to additive and 
proportional differences between the observed and model- 
simulated values. 

2.2. Coefficient of Efficiency E 

The coefficient of efficiency E has been widely used to eval- 
uate the performance of hydrologic models [e.g., Leavesley et 
al., 1983; Wilcox et al., 1990]. Nash and Sutcliffe [1970] defined 
the coefficient of efficiency which ranges from minus infinity to 
1.0, with higher values indicating better agreement, as 

E=I.0- 

N 

• (Oi- Pi) 2 
i=1 

N 

• (Oi- 0) 2 
i=1 

Physically, E is the ratio of the mean square error, 

(2) 

N 

MSE- N -• • (0 i -- Pi) 2, 
i=1 

to the variance in the observed data, subtracted from unity. For 
example, if the square of the differences between the model 
simulations and the observations is as large as the variability in 
the observed data, then E = 0.0, and if it exceeds it, then E < 
0.0 (i.e., the observed mean is a better predictor than Pi). 
Thus a value of zero for the coefficient of efficiency indicates 
that the observed mean 0 is as good a predictor as the model, 
while negative values indicate that the observed mean is a 
better predictor than the model [Wilcox et al., 1990]. 

The coefficient of efficiency represents an improvement over 
the coefficient of determination for model evaluation purposes 
in that it is sensitive to differences in the observed and model- 

simulated means and variances; that is, if Pi = (AOi + B), 
then E decreases as A and B vary from 1.0 and 0.0, respec- 
tively. Because of the squared differences, however, E is overly 
sensitive to extreme values, as is R 2. 

2.3. Index of Agreement d 

Willmort [1981] sought to overcome the insensitivity of cor- 
relation-based measures to differences in the observed and 

model-simulated means and variances by developing the index 
of agreement d, given by 

N 

• (Oi -- pi) 2 
i=• MSE 

d= 1.0- = t.0-N PE N 

• ( Pi- 01 + IOi- 01) 2 
i=1 

(3) 
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The index of agreement varies from 0.0 to 1.0, with higher 
values indicating better agreement between the model and 
observations, similar to the interpretation of the coefficient of 
determination R 2. Willmott [1984] argued that the index of 
agreement represented the ratio between the mean square 
error and the "potential error" (PE), multiplied by N and then 
subtracted from unity. Potential error was defined as 

N 

PE = • (IP,- 01 + I0,- 01) 2 
i=1 

(i.e., the sum of the squared absolute values of the distances 
from Pi to 0 to Oi) and represents the largest value that 
(0 i - Pi) 2 can attain for each observation/model-simulation 
pair. As with the coefficient of efficiency, the index of agree- 
ment represents a decided improvement over the coefficient of 
determination but also is sensitive to •xtreme values, owing to 
the squared differences. 

3. Discussion 

Even a cursory examination of (2) and (3) shows similarities 
between the coefficient of efficiency E and the index of agree- 
ment d. Specifically, d additionally includes the difference 
between the model-simulated values (P•) and the observed 
mean in the denominator of the second term. This leads to the 

difference in the range of the two statistics, -oo-l.0 for the 
coefficient of efficiency and 0.0-1.0 for the index of agreement, 
which provides unique advantages to both. Ranging from 0.0 to 
1.0, the index of agreement is similar in interpretation to R 2, 
while the meaningful value of 0.0 for the coefficient of effi- 
ciency provides a convenient reference point to compare the 
model with the predictive abilities of the observed mean. 

Ironically, both statistics have been criticized for a similar 
interpretational difficulty. Garrick et al. [1978, p. 376] noted 
that for the coefficient of efficiency, "... even poor models 
produce relatively high values (80 or 90%), and the best mod- 
els do not produce value• which, on first examination, are 
impressively higher." Willmott et al. [1985] also observed a 
similar problem with the index of agreement. In particular, 
these difficulties lead to an assumption that the model is, in 
fact, better than the statistic indicates because interpretation of 
any statistic that ranges between 0.0 and 1.0 usually follows 
intuitively from R 2 (i.e., a value of 0.5 is usually interpreted as 
a mediocre model, since for R 2 the variance in the observed 
data explained by the model is only 50%). Although the mean- 
ing is clearly different for E and d, the usual perception of the 
values from these statistics is the same. Such perceptions can 
be misleading, since a value of 0.5, for example, has substan- 
tially different meanings for R 2, E, or d. Reasons cited by 
Garrick et al. [1978] and Willmott et al. [1985] for the relatively 
high values of the respective statistics actually are quite differ- 
ent, and we believe the issues raised by both authors should be 
addressed to provide a proper measure of model performance. 

The sensitivity to outliers is associated with both E and d (as 
well as with R 2) and leads to relatively high values of both 
statistics. This arises due to the squaring of the difference 
terms [Willmott, 1981]. Willmott et al. [1985] noted that a more 
generic index of agreement'could be developed as 

d• = 1.0- (4) 
N 

• (iv,- O'l + IO,- O'l) • 
i=1 

where j represents an arbitrary power (i.e., a positive integer). 
Note that the original index of agreement d developed by 
Willmott [1981] becomes d2 using this notation. 

Of particular interest in this discussion is d •, known also as 
the modified index of agreement. The advantage of d• is that 
errors and differences are given their appropriate weighting, 
not inflated by their squared values. Squaring in statistics is 
useful because squares are easier to manipulate mathemati- 
cally than are absolute values, but use of squares forces an 
arbitrarily greater influence on the statistic by way of the larger 
values. Experience using both d 2 and d • shows that, in general, 
d 2 -> d• for the range of most values, although this relation- 
ship does not hold for extremely low values of both statistics. 
Similarly, the coefficient of efficiency can be adjusted to reduce 
the effect of squared terms by rewriting a more generic form of 
the coefficient of efficiency (following that of the index of 
agreement in equation (4)) as 

N 

Z Io,- 
i=1 

Ej = 1.0- (5) 
N 

E Io,- Ol 
i=1 

where the statistic E • (termed here the modified coefficient of 
efficiency) has the desired properties (not inflated by squared 
values) and is commensurate with d•. 

Garrick et al. [1978, p. 376] further argued that the assump- 
tion of comparing the model to the observed mean was "un- 
necessarily primitive." Better methods exist to define the base- 
line against which a model should be compared. For example, 
persistence or averages that vary by season or another time 
period (i.e., a climatology) may provide a more appropriate 
baseline for most hydrological or hydroclimatological studies 
than simply the average of the entire time series. Thus both E • 
and d• can be rewritten in a "baseline adjusted" form as 

E'=10- 1 ß 

N 

E Io,-v,I 

N 

E Io,-o'1 
i=1 

(6) 

d[= 1.0- 

N 

E Io-Pl 
i=1 

N 

• (IP, - o'1 + Ioi - o' I) 
i=1 

(7) 

where O' is the baseline value of the time series against which 
the model is to be compared. It usually is a function of time 
and, in some applications, may be a function of other variables 
as well. Consequently, d • is useful in that its interpretation is 
more conventional, as it more closely follows the interpretation 
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of R2 for the range of most values encountered. However, the 
meaningful evaluation of 0.0 for E • in cases where the model 
is compared against a more appropriate baseline causes us to 
recommend E • slightly over d • for most applications. Deter- 
mining that the baseline (e.g., climatology or persistence) is a 
better predictor than the model can prove useful in many 
applications where the model estimates still explain a statisti- 
cally significant proportion of the observed variance. In esti- 
mating air temperature in a spatial context, for example, Will- 
mott and Robeson [1995] found that climatology was a better 
estimate of air temperature at unsampled locations than was 
traditional spatial interpolation, even though traditional inter- 
polation provided estimates that captured a significant propor- 
tion of the seasonal variation in air temperature. 

One of the useful properties of correlation, and conse- 
quently R 2, is that its statistical distribution has been well- 
defined. Thus it is easy to evaluate statistical significance (a 
null hypothesis of no correlation) or to assess whether two 
correlations (obtained from different models, for example) are 
statistically different from one another. However, no such sim- 
ple equations exist to determine statistical significance of ei- 
ther the coefficient of efficiency or the index of agreement. 
Nevertheless, it is possible to determine statistically significant 
or statistically different values of both these statistics using 
bootstrap methods. If it is assumed that the observations rep- 
resent the population from which they were sampled (a rea- 
sonable assumption), then it is possible to repeatedly sample 
from the observed/model-simulated pairs to provide a distri- 
bution of the statistic from which confidence intervals can be 

develop6& For a complete discussion of the use of the boot- 
strap to determine significance estimation, the reader is urged 
to consult Efron [1981a, b], Efron and Gong [1983], and Will- 
mott et al. [1985]. 

Although dimensionless measures (e.g., E• and d•) that 
provide a relative assessment of model performance have been 
the focus of this paper thus far, these measures should not be 
used exclusively, as Willmott [1981] correctly argued. In addi- 
tion, it is appropriate to quantify the error. in terms of the units 
of the variable. These measures, or absolute error measures 
(nonnegative statistics that have no upper bound), include the 
square root of the mean square error, or RMSE (RMSE = 
W'MSE), and the mean absolute error, or MAE, given by 

N 

MAE = N -• • IOi- P, (8) 
i=1 

which describe the difference between the model simulations 

and observations in the units of the variable. As with d 2 and 
d•, experience using MAE and RMSE shows that, in general, 
RMSE -> MAE for the range of most values. The degree to 
which RMSE exceeds MAE is an indicator of the extent to 

which outliers (or variance in the differences between the 
modeled and observed values) exist in the data. 

Other measures, such as the slope and intercept of the pre- 
dicted-versus-observed regression line and the systematic and 
unsystematic components of RMSE, also are quite useful for 
diagnostic purposes. The reader is urged to consult Willmott 
[1984] or Willmott et al. [1985] for a more complete discussion 
of these additional measures; discussion of them here is be- 
yond the scope of this paper. Nevertheless, a complete assess- 
ment of model performance should include at least one "good- 
ness-of-fit" or relative error measure (e.g., E • or d •) and at 
least one absolute error measure (e.g., RMSE or .MAE) with 

additional supporting information (e.g., a comparison between 
the observed and simulated mean and standard deviations). 

4. Two Illustrative Examples 
To illustrate the usefulness and the interpretation of E • and 

d •, two examples are given: (1) Model simulations of monthly 
potential evapotranspiration are compared with observations 
from 1981 through 1983 for Baton Rouge, Louisiana, and (2) 
a simulation of runoff is compared with observations from 
October 1972 through September 1989 for the East River 
Basin in southwestern Colorado. These two disparate exam- 
ples are used to show how these statistics may be used for 
model evaluation of hydrologic and hydroclimatic data. Please 
note that the results from these model evaluations are pre- 
sented here solely for illustrating the utility of the relative error 
statistics. Overall efficacy of the potential evapotranspiration 
or runoff-estimating models used here should not be gleaned 
from the simple examples. 

4.1. Potential Evapotranspiration 

Monthly potential evapotranspiration was estimated using 
methods developed by Thornthwaite [1948], Jensen and Haise 
[1963], and van Bavel [1966] (hereinafter referred to as the 
Thornthwaite, Jensen-Haise, and van Bare1 methods) using 
data from 1981 through 1983 for Baton Rouge, Louisiana (see 
McCabe and Muller [1987] for a complete discussion of the 
data and methods). Inputs for these two methods are quite 
disparate, as the Thornthwaite method uses only mean 
monthly air temperature (as well as station latitude) and the 
Jensen-Haise and van Bare1 methods use daily data: mean 
daily air temperature and solar radiation for the Jensen-Haise 
method and mean daily air temperature, wind speed, solar 
radiation, air pressure, and the vapor pressure deficit for the 
van Bare1 method. Monthly time series for the observations 
(measured pan evaporation multiplied by a pan coefficient of 
0.76 [Kohler et al., 1959; McCabe and Muller, 1987]) and the 
three models are shown in Figure 1, while scatterplots for these 
models are shown in Figure 2. 

A comparison of the 3-year mean potential evapotranspira- 
tion with the model-simulated values (Table 1) indicates that 
the estimate using the Thornthwaite method is just over 1 mm 
lower than the observed, while both the Jensen-Haise and van 
Bare1 estimates are larger by more than 6 and 5 mm, respec- 
tively. However, a comparison of the observed and modeled 
standard deviations shows that only the van Bayel method has 
a standard deviation that is near the observed. The standard 

deviation estimated from the Thomthwaite method is nearly 
twice that of the observed, while the Jensen-Haise method is 
almost 20 mm higher. Overestimation of potential evapotrans- 
piration in the summer and underestimation in the winter are 
the reasons for these differences (see Figure 1). Note also that 
the absolute error measures (MAE and RMSE) indicate that 
the mean error for the Jensen-Haise method is nearly twice 
that of the van Bare1 method, while the mean error for the 
Thornthwaite method is nearly 3 times larger than the error in 
the van Bare1 method. Inclusion of more meteorological data 
on a daily time step is largely responsible for the better esti- 
mates from the van Bare1 method. The fact that Thornth- 

waite's method is best suited for long-term estimates and the 
indirect adjustment of the potential evapotranspiration for 
precipitation gage measurement biases [see Legates and 
Mather, 1992] are obvious limitations in the Thornthwaite 
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Figure 1. Time series of monthly potential evapotranspiration estimated by the Thornthwaite [1948], Jensen 
and Haise [1963], and van Bavel [1966] methods compared with observations (measured pan evaporation 
multiplied by a pan coefficient of 0.76). Data were taken from January 1981 through December 1983 for 
southern Louisiana (data from McCabe and Muller [1987]). 

method, although Willmott [1981] demonstrated that much of 
the error in the Thornthwaite method is systematic (most likely 
due to the indirect adjustment for precipitation gage biases) 
and can be easily adjusted to produce more accurate estimates. 

An examination of Pearson's correlation coefficient (r) or 
the coefficient of determination (R 2) yields a misleading pic- 

: :./ 

! ..... , i i i , i . i . 

C. van:navel ..... D. Mo•tldY •;an' '/ 

/ .4o ' ' ...... 50 100 150 200 

Adjusted Pan Evaporation (ram) 

Figure 2. Scatterplots of the Thornthwaite, Jensen-Haise, 
van Bavel, and climatological (monthly mean) estimates versus 
the observed (coefficient adjusted pan evaporation) data pre- 
sented in Figure 1. 

ture. The van Bavel and Jensen-Haise methods have identical 

values of r and R 2, while the values for the Thornthwaite 
method, albeit somewhat lower, imply a reasonably good as- 
sociation. Remember that the correlation coefficient standard- 

izes the variance; thus the differences in the modeled and 
observed standard deviations do not influence these two sta- 

tistics. As a result, use of the correlation coefficient or the 
coefficient of determination yields a rather biased picture of 
the three methods, as it implies that all three methods are 
relatively good with no notable differences between the 
Jensen-Haise and the van Bavel methods. 

Use of the index of agreement, the coefficient of efficiency, 
or their modified counterparts gives a different, and more 
accurate, representation of the three models. From these sta- 
tistics, the van Bavel method has a higher value than (i.e., is 
better than) the Jensen-Haise method, which, in turn, has a 
higher value than the Thornthwaite method (note that boot- 
strap methods could be used to determine if these values are 
statistically different). This conclusion clearly is warranted 
from an examination of the time series (Figure 1) and from the 
absolute error measures. 

The issue raised earlier was one of interpretation: Both the 
index of agreement and the coefficient of efficiency tend to 
make mediocre models look good by their relatively high val- 
ues. An index of agreement of 0.82 would lead one to believe 
that the Thornthwaite method produces reasonably good esti- 
mates. A MAE of more than 30 mm per month (more than a 
third of the mean monthly potential evapotranspiration), how- 
ever, indicates otherwise. When the squared terms are re- 
placed by absolute values (i.e., d • is used rather than d2), the 
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Table 1. Means and,Standard Deviations of Observed and Simulated Monthly Potential 
Evapotranspiration for Baton Rouge, Louisiana, for the Period From January 1981 
Through December 1983, and Statistics Comparing the Observed and Simulated 
Time Series 

Statistic Observed Thornthwaite Jensen-Haise van Bavel 

Mean, mm 
Standard deviation, mm 
Mean absolute error, mm 
Root mean square error, mm 
Pearson's correlation 
Coefficient of determination 

Index of agreement 
Modified index of agreement 
Baseline-adjusted index of agreement 
Coefficient of efficiency 
Modified coefficient of efficiency 
Baseline-adjusted coefficient of efficiency 

94 
36 

93 100 99 
64 54 33 
34 20 11 

40 25 14 
0.81 0.93 0.93 

0.66 0.86 0.86 
0.82 0.92 0.96 
0.60 0.74 0.82 

0.24 0.32 0.46 

-0.30 0.48 0.85 
-0.14 0.32 0.64 
-2.32 -0.98 -0.05 

interpretation of the efficacy of the three models (0.60, 0.74, 
and 0.82, respectively) is much more appropriate. Both the 
coefficient of efficiency and the modified coefficient of effi- 
ciency exhibit considerable differences between the three mod- 
els, and interpretation does not appear to be a problem. Since 
these statistics are lower unbounded, they cannot be inter- 
preted like the coefficient of determination or the indices of 
agreement. 

Note that the negative values for the coefficients of effi- 
ciency for the Thornthwaite model (particularly that of E and 
E•) indicate, at least for these data, that the mean monthly 
potential evapotranspiration estimates using the Thornthwaite 
method are less in agreement with the observations than if a 
constant value (i.e., the observed annual mean value of 94 mm) 
were used for each month of the year. This arises because the 
absolute error statistics (MAIE and RMSE) are more than one 
half of the observed monthly standard deviation. A model with 
no variability (i.e., a nonvarying, climatological estimate) will 
produce a RMSE of 36 mm (the observed standard deviation), 
which is lower than the RMSE produced by the Thornthwaite 
method. Thus the first two coefficients of efficiency (E and E •) 
are negative. A value of 0.81 for Pearson's product-moment 
correlation coefficient obscures the real inadequacies of the 
Thornthwaite estimates. 

As Garrick et al. [1978] indicate, the obvious ability of the 
models to reproduce the strong seasonality in potential evapo- 
transpiration may not be of interest. That is, we may wish to 
ask, Are these models able to reproduce the interannual vari- 
ability in potential evapotranspiration without r•gard to the 
intra-annual variability? In such a case, the question is whether 
the models' predictive abilities are better than simply using the 
long-term mean monthly potential evapotranspiration (here 
defined by the 3-year average monthly potential evapotranspi- 
ration). If this is our interest, then the long-term mean monthly 
potential evapotranspiration, 0, in the modified index of 
agreement and the modified coefficient of efficiency should be 
replaced with a monthly varying (subscript i) baseline average, 
O' = Oi. 

Examining the baseline-adjusted values (Table 1) for the 
three models indicates that using climatology (i.e., mean 
monthly values) may be a better predictor of potential evapo- 
transpiration for this data set than using any of the three 
methods, including even the van Bavel method. Although this 
conclusion cannot be extrapolated outside of this data set 

(which we wish to stress), it nevertheless sheds light on how 
these goodness-of-fit statistics can be used to evaluate the 
efficacy of the three models in this example. 

4.2. Runoff 

As a second example, runoff from October 1972 through 
September 1989 for the East River Basin (750 km 2) in south- 
western Colorado was modeled using the precipitation runoff 
modeling system (PRMS) [Leavesley et al., 1983] and compared 
with observations (see McCabe and Hay [1995] for a complete 
discussion of the data and methods). Monthly observed and 
simulated runoff time series are shown in Figure 3, and the 
scatterplots between the simulated and observed series are 
shown in Figure 4. 

PRMS is a modular-design, distributed-parameter, physical- 
process watershed model. Distributed-parameter capabilities 
are provided by partitioning a watershed into relatively physi- 
cally homogeneous units. Each unit is assumed to be homoge- 
neous with respect to its hydrologic response and is called a 
hydrologic response unit (HRU). Both a water balance and an 
energy balance are computed daily for each HRU. The sum of 
the responses of all HRUs, weighted on a unit-area basis, 
produces the daily watershed response [Leavesley et al., 1992]. 
Meteorological inputs include daily precipitation, maximum 
and minimum air temperature, and solar radiation. Daily me- 
teorological data were obtained for each HRU or were extrap- 
olated to each HRU using data from meteorological stations 
and a set of user-defined adjustment coefficients developed 
from regional climate data [Leavesley et al., 1983, 1992]. PRMS 
parameters were estimated for each HRU using relations be- 
tween parameter values and measurable basin and climatic 
characteristics that were defined in previous studies [Leavesley 
et al., 1992]. Daily runoff estimates were summed to produce 
monthly values for comparison with monthly runoff measured 
at Almont, Colorado. 

The difference between the simulated and observed mean 

monthly runoff for the 17 years is just over 1 mm, while the 
difference between the simulated and observed standard devi- 

ations is virtually negligible (Table 2). While the small values 
of these differences are encouraging, the absolute error statis- 
tics indicat e that the differences between the monthly simu- 
lated and observed runoff are large relative to the observed 
mean and standard deviation, although these differences do 
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Figure 3. Observed and modeled monthly runoff (precipitation runoff modeling system) for the East River 
Basin in southwestern Colorado from October 1972 through September 1989 (data from McCabe and Hay 
[1995]). 

not appear to exhibit a systematic bias, as is evidenced by the 
strong agreement in the mean and standard deviation. 

Examination of the goodness-of-fit or relative error mea- 
sures indicates that the model is fairly adequate in reproducing 
the observed runoff. The high value of the index of agreement 
(d = 0.95) tends to give the impression that the model is 
much better than it really is. Thus the modified index of agree- 
ment (d •) is probably a better index than its original counter- 
part from a purely interpretational standpoint. In addition, the 
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'•' 150 

=1 100 

50 

Figure 4. Scatterplot of the observed and modeled monthly 
runoff (precipitation runoff modeling system) data presented 
in Figure 3. 

three coefficients of efficiency indicate that for this example, 
the model provides no better predictive ability than using the 
long-term mean monthly runoff (i.e., although the value of E • 
is greater than zero, it is not statistically significant). It should 
not be construed from this simple example, however, that the 
PRMS model does not contribute any more predictive ability 
than the use of monthly means for other potential applications. 

5. Recommendations and Final Thoughts 
From our discussion and evaluation it is clear that correla- 

tion-based measures are inappropriate and should not be used 

Table 2. Means and Standard Deviations of Observed and 

Simulated Monthly Runoff in the East River Basin in 
Southwestern Colorado for the Period October 1972 

Through September 1989, and Statistics Comparing 
the Observed and Simulated Time Series 

Statistic Observed Simulated 

Mean, mm 
Standard deviation, mm 
Mean absolute error, mm 
Root mean square error, mm 
Pearson's correlation 

Coefficient of determination 

Index of agreement 
Modified index of agreement 
Baseline-adjusted index of agreement 
Coefficient of efficiency 
Modified coefficient of efficiency 
Baseline-adjusted coefficient of efficiency 

33 

46 

32 

46 

11 

19 
0.91 

0.83 

0.95 

0.83 

0.60 

0.82 

0.66 

0.06 
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to evaluate the goodness-of-fit of model simulations. This con- 
clusion arises from the standardization inherent in correlation- 

based measures and the fact that high correlations can be 
achieved by mediocre or poor models. Note in our evaluation 
of potential evapotranspiration that the correlation was iden- 
tical (r -- 0.93) for the van Bavel and Jensen-Haise methods 
despite the fact that other statistics and visual inspection of the 
time series clearly indicate the superiority of the van Bavel 
estimates. These concerns are of particular importance owing 
to the widespread use of correlation-based measures to assess 
the goodness-of-fit of a model, often without additional eval- 
uation information. It is recommended therefore that either 

E[ or d[ be used in lieu of correlation-based measures to 
provide a relative assessment of model performance. These 
two statistics use absolute values rather than squared differ- 
ences (as in their originally specified counterparts) in their 
computation, which makes E • and d • more conservative mea- 
sures. 

One of the biggest problems associated with all relative error 
or goodness-of-fit measures is one of interpretation. As im- 
plied earlier, the widespread use of correlation-based mea- 
sures leads to the implicit interpretation of all relative error 
measures as if they were correlation-based. Interpretation of 
correlation-based measures is relatively straightforward; that 
is, a coefficient of determination (R 2) of 0.70 indicates that the 
model explains 70% of the variability in the observed data. 
With the indices of agreement, any value (excepting 0.0 and 
1.0) is difficult to interpret because its physical meaning is 
obscure. The meaningful zero present in the coefficient of 
efficiency, however, yields an appropriate reference point for 
the interpretation of all other values. Specifically, a value of 
0.70 for E, for example, indicates that the mean square error 
(i.e., the squared differences between the observed and model- 
simulated values) is 30% of the variance in the observed data 
(see equation (2)). Both E• and E[ can be similarly inter- 
preted. On the basis of the efficacy of the coefficients of effi- 
ciency (over correlation-based measures) and their ability for 
physical interpretation owing to their meaningful comparison 
with 0.0 (i.e., comparison with a "base" model such as the 
long-term mean or climatology), E• and E[ are suggested as 
the most appropriate relative error or goodness-of-fit measures 
available. Nevertheless, d i and d • have advantages due to their 
bounds between 0.0 and 1.0, just like correlation-based mea- 
sures. 

In addition to E • or E [, it is strongly recommended that the 
observed and modeled means and standard deviations, as well 
as MAE or RMSE (and probably both), be reported. Scatter- 
plots and residual and outlier analyses also are essential to an 
appropriate model assessment. Use of absolute error measures 
(such as MAE or RMSE) provide an evaluation of the error in 
the units of the variable, which often can provide more infor- 
mation about model efficiency than can be gleaned from the 
use of relative error or goodness-of-fit measures. Because of 
the slight bibs (i.e., inflated values) in RMSE when large out- 
liers are present, MAE is slightly preferred over RMSE. Sta- 
tistically significant differences among models (or relative to 
0.0 in the case of E[) should be assessed through bootstrap 
techniques discussed by !4qllmott et al. [1985]. Additional sta- 
tistics and graphical tools suggested by Willmott [1984] and 
Willmott et al. [1985] provide useful diagnostics into systematic 
problems associated with a given model. Simply reporting a 
single goodness-of-fit measure is inappropriate; goodness-of-fit 

measures are but a single tool in evaluating model perfor- 
mance. 
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