Interação da Radiação Eletromagnética com a Matéria Parte 1 FÍSICA DAS RADIAÇÕES I Paulo R. Costa

GRUPO DE DOSIMETRIA DAS RADIAÇÕES e FÍSICA MÉDICA

IFUSP - Instituto de Física da USP

FÍSICA DAS RADIAÇÕES I (4300437) 1° semestre/2017

Terças	Aula	Temas/Provas/Recessos	Sextas	Aula	Temas/Provas/Recessos	IPO DE SIMETRIA
06/03	1	Apresentação/Radiação	10/03	2	Raios X	SICA MÉDICA
13/03	3	Raios X	17/03	4	Radioisótopos	de Física da USP
20/03	5	Desintegração	24/03	6	Decaimentos	
27/03	7	Interação-partíc. carregadas	31/03	8	Interação-partíc. carregadas	
03/04	9	Interação-partíc. carregadas	07/04	10	Dose absorvida	
10/04		Semana santa. Não haverá aulas	14/04		Semana santa. Não haverá aulas	
17/04		P1	21/04		FERIADO	4
24/04	11	Interação-part. sem carga	28/04	12	Interação part. sem oarga	
01/05	16	FERIADO	05/05	13	Interação-part. sem carga	
08/05	14	Interação-part. sem carga	12/05	15	Grandezas e Unidades	
15/05	16	Grandezas e Unidades/Efeitos Biológicos	19/05	17	Efeitos Biológicos	
22/05		Não Haverá Aula (Viagem do Professor)	26/05		Não Haverá Aula (Viagem do Professor)	
29/05		Não Haverá Aula (Viagem do Professor)	02/06		P2	
05/06	18	Dose absorvida e teoria de Bragg-Gray	09/06	19	Dose absorvida e teoria de Bragg-Gray	
12/06	20	Método Monte Carlo	16/06		FERIADO	
19/06	21	Detectores de radiação	23/06	22	Proteção radiológica/ Blindagens	
26/06		P3	30/06		SUB	

IFUSP - Instituto de Física da USP

QUAIS OS PRINCIPAIS MECANISMOS DE INTERAÇÃO DA RADIAÇÃO ELETROMAGNÉTICA COM A MATÉRIA ?

COMO ESSES MECANISMOS SE COMPORTAM EM FUNÇÃO DA ENERGIA INCIDENTE E DO NÚMERO ATÔMICO DO MATERIAL ?

- Microondas
- Ondas de rádio etc.

Conceitos básicos

IFUSP - Instituto de Física da USP

Interação de fótons com a matéria

IFUSP - Instituto de Física da USP

¥ [

Deposição de energa

Interação de fótons com a matéria

IFUSP - Instituto de Física da USP

- Penetração de fótons na matéria
 - Atenuação
 - Remoção de fótons de um feixe de radiação
 - Absorção
 - Espalhamento
 - Coeficiente de atenuação linear
 - Fração dos fótons de uma dada energia removidos de um feixe de radiação x ou γ por unidade de espessura do material (μ) – [cm⁻¹]
 - Probabilidade de interação do fóton
 - $-\mu \rightarrow$ Secção de choque macroscópica

Coeficientes de atenuação

Instituto de Física da USP

N₀ muito grande

Caso ideal sem espalhamento

µ– probabilidade de interação por unidade de espessura

μ*dl* – probabilidade de interação na espessura infinitesimal *dl* $N_{0} \xrightarrow{l} M_{1} \qquad N_{L}$ Para N partículas incidentes: $dN = -\mu Ndl$

dl

Variação fracional de N devido à absorção em dl:

$$\frac{dN}{N} = -\mu dl$$

Coeficientes de atenuação

Vale no caso ideal

IFUSP - Instituto de Física da USP

Vale no caso ideal
(sem espalhamento)
ou se há espalhamento,
mas este não é contado em N,
$$N_{L} = N_{0} \frac{dN}{N} = -\int_{l=0}^{L} \mu dl$$
$$N_{L} = -\mu L$$
$$N_{L} = N_{0} e^{-\mu L}$$

SUPONDO-SE VÁRIOS PROCESSOS DE INTERAÇÃO (ainda sem espalhamento)

$$\mu = \mu_1 + \mu_2 + \mu_3 + \cdots$$
Coeficiente de atenuação linear parcial

$$\frac{N_L}{N_0} = e^{-(\mu_1 + \mu_2 + \mu_3 + \cdots)L} \qquad N_L = N_0 \left(e^{-\mu_1 L} \right) \left(e^{-\mu_2 L} \right) \left(e^{-\mu_3 L} \right) \cdots$$

NÚMERO TOTAL
DE INTERÇÕES
POR TODOS OS
PROCESSOS
$$\Delta N = N_0 - N_L = N_0 - N_0 e^{-\mu L} = N_0 (1 - e^{-\mu L})$$
NÚMERO PARCIAL
DE INTERÇÕES
DEVIDO A UM
PROCESSO x
$$\Delta N_x = (N_0 - N_L) \frac{\mu_x}{\mu} = N_0 (1 - e^{-\mu L}) \frac{\mu_x}{\mu}$$
Fração de interações
pelo processo x

- Exemplo
 - Coeficientes de atenuação parciais de dois processos
 - $\mu_1 = 0.02 \text{ cm}^{-1} \text{ e} \mu_2 = 0.04 \text{ cm}^{-1}$
 - L = 5 cm e N₀ = 10⁶ fótons
 - N_L = ? e quantos fótons são absorvidos em cada processo?

$$N_{L} = N_{0}e^{-(\mu_{1}+\mu_{2})L} = 10^{6} \times e^{-(0,02+0,04)5} = 7.408 \times 1$$
$$N_{0} - N_{L} = (10^{6} - 7,408 \times 10^{5}) = 2,592 \times 10^{5}$$

$$\Delta N_1 = \left(N_L - N_0\right) \frac{\mu_1}{\mu} = 2,592 \times 10^5 \times \frac{0,02}{0,06} = 8,64 \times 10^4$$

$$\Delta N_2 = \left(N_L - N_0\right) \frac{\mu_2}{\mu} = 2,592 \times 10^5 \times \frac{0.04}{0.06} = 1,73 \times 10^5$$

 0^{5}

Coeficientes de interação

Fonte: http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html

Coeficientes de interação

- Espessura de material necessária para reduzir a intensidade do feixe à metade
 Medida indireta da <u>qualidade</u> do feixe
 Medidas realizadas em feixe estreito
 - Collimator Collimator Attenuator Detector Detector Source Source Some Photons are Scattered Scattered into the Photons not Detector Detected **Broad-Beam Geometry** Narrow-Beam Geometry в А

Fonte: Johns&Cunnighan, The Physics of Radiology, 1983

- Para fótons monoenergéticos sob condições de feixe estreito
 - Probabilidade de atenuação é a mesma para cada HVL adicionado

$$redução = \left(\frac{1}{2}\right)^n$$

n = número de HVL's adicionados

- Exemplo: transmissão através de 5 HVL's de material
 - $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = (\frac{1}{2})^5 = 0,031 \text{ ou } 3,1\%$
 - Ou seja, 97% dos fótons são atenuados

Energia efetiva

- Em radiologia feixes <u>poli</u>energéticos
- HVL maneira de determinar a qualidade do feixe
- E_{ef} de um feixe polienergético é a energia que teria um feixe monoenergético com mesmo HVL

HVI –	0,693		
11 V L —	$\mu(E_{ef})$		

HVL (mm Al)	Effective Energy (keV)
0.26	14
0.39	16
0.55	18
0.75	20
0.98	22
1.25	24
1.54	26
1.90	28
2.27	30
3.34	35
4.52	40
5.76	45
6.97	50
9.24	60
11.15	70
12.73	80
14.01	90
15.06	100

Al, aluminum.

- Endurecimento do feixe
 - Fótons de baixa energia em um feixe polienergético têm maior probabilidade de interação que fótons de alta energia
 - Coeficiente de homogeneidade

Seções de Choque

nstituto de Física da USP

Seção de Choque ou Seção Eficaz

Ângulo solido

IFUSP - Instituto de Física da USP

$$\Omega = rac{A}{r^2}$$
 Sr – esferorradiano ou esterradiano $d\Omega = 2\pi sen heta d heta$

Seções de Choque^{1 barn = 1b = 10⁻²⁸ m²}

Seção de Choque Diferencial em ângulo	$\frac{d_{a}\sigma_{\Omega}}{d\Omega} =$	número de partículas espalhadas ou emitidas no intervalo de ângulo sólido $[\Omega, \Omega + d\Omega]$ $N_{feixe} N_{alvo}$
Seção de Choque Diferencial em energia	$\frac{d_a \sigma_E}{dE} =$	número de partículas espalhadas ou emitidas no intervalo de energias entre $[E, E + dE]$ $N_{feixe}N_{alvo}$
$_{a}\sigma = \iint \frac{d_{a}\sigma_{a}}{d\Omega}$	<u>Ω</u> senθdθd	$d\phi \qquad _{a}\sigma = \int \frac{d_{a}\sigma_{E}}{dE} dE$

Espalhamento coerente (ou elástico ou Rayleigh)

Fig. 8.1 Seção de choque para espalhamento coerente para alguns átomos. A reta em linha pontilhada indica variação com potência (-2) de $h\nu$. Valores obtidos a partir da base de dados XCOM (Berger et al., 2010b)

Fonte: Okuno; Yoshimura Física das radiações. 2010

Espalhamento Inelástico Clássico (Thomson)

IFUSP - Instituto de Física da USP

- Feixe de fótons (onda eletromagnética) passando perto de um elétron
 - Aceleração e irradiação de parte da energia
 - Secção de choque \rightarrow física clássica
 - Feixe não-polarizado
 - Campos E₁ e E₂
- Utilizando a eletrodinâmica clássica pode-se demonstrar que

$$\frac{d\sigma_0}{d\Omega} = \frac{r_0^2}{2} \left(1 + \cos^2\theta\right)$$

Fonte: Johns, H.E.; Cunninghan, J.R. – The Physics of Radiology. 1983 – Cap.5 e 6

$$E = hv \frac{\alpha(1 - \cos\theta)}{1 + \alpha(1 - \cos\theta)}$$

$$hv = \frac{hv}{1 + \alpha(1 - \cos\theta)}$$

onde $\alpha = \frac{hv}{m_0c^2} = \frac{hv(\operatorname{em keV})}{511}$

$$hv = \frac{hv}{n_0c^2} = \frac{hv(\operatorname{em keV})}{511}$$

$$hv = \frac{hv}{n_0c^2} = \frac{hv(\operatorname{em keV})}{511}$$

$$hv = \frac{hv}{n_0c^2} = \frac{hv(\operatorname{em keV})}{511}$$

Fonte: Johns, H.E.; Cunninghan, J.R. – The Physics of Radiology. 1983 – Cap.5 e 6

- <u>Exercício</u>
- Choque frontal

 $\theta \approx 180^{\circ} \phi \approx$

 $E_{max} \approx$

 $h v'_{\min} \approx$

- Choque leve $\theta \approx 0 \quad \phi \approx$ $E \approx$ $hv' \approx$ distribuição angular

 $0 \le \theta \le 180^{\circ}$

$$\ldots \leq \phi \leq \ldots$$

- Choque frontal $\theta \approx 180^{\circ} \quad \phi \approx 0$ $E_{max} \approx hv \frac{2\alpha}{1+2\alpha}$ $hv'_{min} \approx hv \frac{1}{1+2\alpha}$

2α

- Choque leve

 $\theta \approx 0 \quad \phi \approx 90^{\circ}$ E \approx 0 hv' \approx hv distribuição angular

 $0 \le \theta \le 180^{\circ}$ $0 \le \phi \le 90^{\circ}$

Fig. 8.3 Razão entre a energia do fóton espalhado por efeito Compton e a do fóton incidente, em função do ângulo de espalhamento, para três energias de fótons (51,1 keV, 511 keV e 5,11 MeV). Na escala à direita estão os valores da fração da energia do fóton que é transferida como energia cinética ao elétron Fonte: Okuno;Yoshimura Física das radiações. 2010

- IFUSP Instituto de Física da USP
- Secção de choque para o espalhamento Compton
 - Equação de Klein-Nishina (1928) [cm² sr⁻¹/elétron]
 - Aplicação da teoria quântica relativística de Dirac (1927)

$$\left(\frac{d\sigma}{d\Omega}\right) = \frac{r_e^2}{2} \frac{1 + \cos^2 \theta}{\left[1 + \alpha(1 - \cos \theta)\right]^2} \left\{1 + \frac{\alpha^2(1 - \cos \theta)^2}{\left(1 + \cos^2 \theta\right)\left[1 + \alpha(1 - \cos \theta)\right]}\right\}$$
$$\frac{\alpha \to 0}{h\nu' \approx h\nu}$$
$$\frac{\theta \to 0}{h\nu' \approx h\nu}$$
$$\frac{\theta \to 0}{h\nu' \approx h\nu}$$
$$\frac{\sigma}{2} \to \left(\frac{d\sigma}{d\Omega}\right)_{T_h} \to \frac{r_e^2}{2}(1 + \cos^2 \theta)$$
$$\left(\frac{d\sigma}{d\Omega}\right) \to r_e^2$$

Fig. 8.4 (A) Seção de choque diferencial em ângulo de espalhamento do fóton, segundo Klein e Nishina;
 (B) distribuição angular dos elétrons de recuo; (C) gráfico da Eq. (8.8), relacionando θ e φ. Todos os gráficos são para fótons incidentes de energia 51 keV (linha cinza), 511 keV (linha tracejada) e 5,11 MeV (linha pontilhada)

Fonte: Okuno; Yoshimura Física das radiações. 2010

Seção de choque total por elétron

Fonte: Okuno; Yoshimura Física das radiações. 2010

Distribuição de energia dos elétrons

Probabilidade, por elétron, em uma interação Compton do fóton fornecer ao elétron uma energia cinética entre K e K+dK

$$\frac{d_{e}\sigma}{dK} = \frac{d_{e}\sigma}{d\Omega_{\theta}\frac{dK}{d\theta}}$$

Para $\alpha \gg 1$

Uma fração considerável dos elétrons recebe energias próximas à máxima

$$K_{max} = h\nu - h\nu_{min}$$

Fig. 8.6 Seção de choque diferencial em energia transferida, por elétron, calculada pela expressão de Klein-Nishina, para algumas energias de fóton incidente. As linhas pontilhadas verticais indicam as energias máximas dos elétrons, cujos valores numéricos estão marcados

