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An exact non-linear formulation of the equilibrium of elastic prismatic rods subjected to compression and
planar bending is presented, electing as primary displacement variable the cross-section rotations and
taking into account the axis extensibility. Such a formulation proves to be sufficiently general to encom-
pass any boundary condition. The evaluation of critical loads for the five classical Euler buckling cases
is pursued, allowing for the assessment of the axis extensibility effect. From the quantitative viewpoint,
it is seen that such an influence is negligible for very slender bars, but it dramatically increases as the
slenderness ratio decreases. From the qualitative viewpoint, its effect is that there are not infinite critical
loads, as foreseen by the classical inextensible theory. The method of multiple (spatial) scales is used
to survey the post-buckling regime for the five classical Euler buckling cases, with remarkable success,
since very small deviations were observed with respect to results obtained via numerical integration of
the exact equation of equilibrium, even when loads much higher than the critical ones were considered.
Although known beforehand that such classical Euler buckling cases are imperfection insensitive, the
effect of load offsets were also looked at, thus showing that the formulation is sufficiently general to
accommodate this sort of analysis.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

This paper should not begin without recalling the magisterial
work by Euler [1] published 268 years ago, in which variational
methods were applied to determine the “elastica” and buckling loads
of inextensible rods, based on kinematical hypothesis suggested by
Bernoulli [2]. Since then, the subject has been extensively studied, as
seen in [3–8], due to its utmost relevance to the design of reticulated
structures.

Also, this paper recasts and expands works written by the author
more than 20 years ago [9,10]. The general non-linear equation of
equilibrium of 2D Bernoulli–Euler elastic beam-columns subjected to
end bending moment and compression force with possible loading
offset (imperfection) is written in terms of cross-section rotations,
taking into account axial stretching.

The general linearised equation is examined in order to evaluate
critical loads for each one of the five classic Euler buckling cases,
considering different constraint conditions [3,4]. Such critical loads
are compared to the classical values for inextensible bars and con-
clusions are drawn with regard to the number of critical loads.
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Next, the non-linear equation of equilibrium is recast and the
post-buckling regime is surveyed using themethod ofmultiple scales
to produce a single explicit solution that is valid for any one of the
five classic cases. Unlike the basic perturbation techniques used in
non-linear statics, such as the straightforward expansion method
(Poincaré's method) [11], which are barely capable of estimating the
initial post-buckling response, the method of multiple scales [12]
is able to supply a very accurate estimate of the displacements for
loads much higher than the critical one, as seen when a comparison
is made with results of numerical integration. The method of multi-
ple scales is known for rendering uniformly convergent expansions,
which is a most valuable feature in non-linear dynamics, where the
independent variable (time) ranges from zero to infinity. In non-
linear statics, the variation of the independent variable (co-ordinate
along the bar axis) is comfortably limited to the bar length. It was
already surprising to the author 20 years ago and so it is even more
now, that very little attention has been given to the remarkable
power of the multiple scales expansions to supply at the same time
simple and accurate results in non-linear statics. In fact, only a few
references on the use of the method of multiple scales in non-linear
statics can be reported in the literature, as in [13,14].

Although the classical elastic Euler buckling cases are known
to be imperfection insensitive [6,7], both the perfect and imper-
fect responses are inter-compared for the clamped-free and the
hinged–hinged rods, as illustrative examples of the formulation
generality.

http://www.sciencedirect.com/science/journal/nlm
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Fig. 1. (a) Prismatic elastic rod under bending and compression; (b) Bernoulli–Euler beam kinematics.

2. Non-linear equilibrium equation

The prismatic beam-column of Fig. 1(a), with length �, cross-
section area A and moment of inertia I, made of an elastic material
of Young's modulus E, is considered. It is subjected to an initial axial
compression P. It may be the case that end-bending moments come
into play, as result of constraint conditions and/or load offsets. In
the general case, to restore equilibrium with respect to moments, it
may happen that end transversal forces R also appear.

Fig. 1(b) introduces the notation and refers to the Bernoulli–Euler
kinematics, which is characterised by the following well-known re-
lationships:

u = ū − z sin�,

w = w̄ − z(1 − cos �),

sin � = w̄′

�̄
⇒ w̄′ = �̄ sin �,

cos � = 1 + ū′

�̄
⇒ 1 + ū′ = �̄ cos �, (1)

where u and w stand for the axial and transversal displacements
of a point P that in the undeformed configuration is given by (x,z);
ū and w̄ are the corresponding displacements for the cross-section
centroid at abscissa x; � is the cross-section rotation at abscissa x;
primes indicate derivation with respect to x. The axis stretching is
given by

�̄ =
√
(1 + ū′)2 + (w̄′)2. (2)

It can be shown [15]—for an elastic material obeying Hooke's
law,1 i.e., � = E(� − 1), where � is the stretching at the point (x,z)—
that the normal force and the bending moment can be exactly
evaluated as

N = EA(�̄ − 1), (3)

M = −EI�′. (4)

Considering the applied end loads, the normal force and the bending
moment can also be written as

N = −P cos � + R sin �, (5)

M = M� − R[(� + ū�) − (x + ū)] − P(w̄� − w̄)

= M0 + R(x + ū) + Pw̄, (6)

1 Filipisch and Rosales [16] consider other statements for Hooke's law, depend-
ing on which stress (engineering, second Piola–Kirchhoff, Cauchy) and strain (linear,
Green, Almansi, Hencky) definitions are used.

where, without loss of generality, it was assumed in the last of (6)
that ū0 = 0 and w̄0 = 0. Hence, combining (3) and (5), as well as (4)
and (6)

EA(�̄ − 1) = −P cos � + R sin �, (7)

−EI�′ = M� − R[(� + ū�) − (x + ū)] − P(w̄� − w̄)

= M0 + R(x + ū) + Pw̄. (8)

After derivation with respect to x and taking (1) into account, (8) is
rewritten as

−EI�′′ = R(1 + ū′) + Pw̄′ = �̄(R cos � + P sin �). (9)

From (7), the axis stretching is

�̄ = 1 −
(

P
EA

cos � − R
EA

sin �
)
. (10)

Finally, (10) in (9) leads to a second-order differential equation for
the rotations:

EI�′′ +
[
1 −

(
P
EA

cos � − R
EA

sin �
)]

(R cos� + P sin�) = 0. (11)

The corresponding non-dimensional equation is

d2�

d�2 + p
�
[1 − p(cos � − � sin �)](� cos � + sin �) = 0, (12)

p = P
EA

, � = R
P
, � = x

�
, � = I

A�
2 . (13)

The exact non-linear Eq. (12) can be approximated up to the order
�3, where 0 < �>1, by

d2�

d�2 + �1� + ��2�2 + �3�3 = ��0, (14)

��0 = −�p(1 − p)
�

, ��2 = −�p(1 − 4p)
2�

,

�1 = p(1 − p + �2p)
�

, �3 = −p(1 − 4p + 4�2p)
6�

. (15)

Notice that the non-homogeneous term and the coefficient of the
quadratic term are scaled in (14) as of the order �, since � is null or
at least small compared to the unity in the five classic Euler buckling
cases, which are the main concern of this study.
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Fig. 2. The five classic Euler buckling cases.

3. Linearised equilibrium equation: classic Euler buckling cases

Fig. 2 refers to the five classic Euler buckling cases [3,4]. To
determine the corresponding critical loads for the perfect systems
(no load offsets here) it suffices to consider the linearised form
of (14):

d2�

d�2 + �1� = ��0. (16)

Notice that in Cases (I)–(IV) �=0 ⇒ ��0=0, because no transversal
force is needed at the beam ends to secure equilibrium. In Case V,
equilibrium requires that

� = R
P

= EI�′(0)

P�
(
1 + ū�

�

) ≈
d�
d�

(0)

p(1 − p)
�

⇒ d�
d�

(0) ≈ �p(1 − p)
�

. (17)

Yet, from the first of (15) and (17), it is found that for Case V

��0 ≈ −d�
d�

(0). (18)

In the classical inextensible rod solution, (16) is replaced by

d2�

d�2 + (k�)2� = ��0, (19)

where

k� =
√
p
�

(20)

is an approximation for
√

�1.
Solution to (16)—or equally (19), if

√
�1 is replaced by k�—is

� = ��0

�1
+ C1 sin(

√
�1�) + C2 cos(

√
�1�), (21)

where C1 and C2 are real constants to be determined from the bound-
ary and/or symmetry conditions:

Case I ⇒ �(0) = 0 and
d�
d�

(1) = 0,

Case II ⇒ d�
d�

(0) = 0 and
d�
d�

(1) = 0,

Case III ⇒ �(0) = 0 and �
(
1
2

)
= 0,

Case IV ⇒ �(0) = 0 and �(1) = 0,

Case V ⇒ �(0) = 0 and
d�
d�

(1) = 0. (22)

Critical loads are evaluated from (22), provided the solution (21)
is non-trivial. For the inextensible bar, an infinite number of Euler
buckling loads pE are found, the smallest of them being

Case I k� = 	
2

⇒ pE = 	2�
4

,

Case II k� = 	 ⇒ pE = 	2�,

Case III
k�
2

= 	 ⇒ pE = 4	2�,

Case IV k� = 	 ⇒ pE = 	2�,

Case V k� = 4.493 ⇒ pE = 20.19�. (23)

Should the axis stretching be considered, �1 would play the same
role as (k�)2. By the way, in Cases I–IV, it is seen that �1 =p(1−p)/�,
since � = 0. Even in Case V, �1=p(1−p)/� still holds for the unbuckled
solution, up to the critical state. Hence, the smallest critical loads
considering stretching are

Case I
√

�1 = 	
2

⇒ pcr = 1 −
√
1 − 	2�
2

,

Case II
√

�1 = 	 ⇒ pcr = 1 −
√
1 − 4	2�
2

,

Case III
√

�1 = 2	 ⇒ pcr = 1 −
√
1 − 16	2�
2

,

Case IV
√

�1 = 	 ⇒ pcr = 1 −
√
1 − 4	2�
2

,

Case V
√

�1 = 4.493 ⇒ pcr = 1 − √
1 − 80.76�
2

. (24)

A synthetic relationship between the critical loads, considering
axis stretching (pcr) or not (pE), can be proposed:

pcr = 1 − √
1 − 4pE
2

. (25)

Thus, the actual critical load pcr is always larger than the Euler
buckling load pE. Notice that � = I/A�

2 = (r/�)2—where r is the gy-
ration radius of the cross section—is inversely proportional to the
square of the slenderness ratio. It is seen that for very slender bars,
pcr ≈ pE. Yet, as the slenderness ratio decreases, and consequently
pE increases, tending to 1

4 , the critical load tends to twice the Euler
buckling load, as it can be seen in Fig. 3.

It is also clear from (25) that there is not such a thing as a critical
load pcr when pE > 1

4 . Taking Case II as an example, it means that
there is not a critical load for a bar with � <2	r, that is to say that the
distance between two consecutive inflection points of the elastica
cannot be smaller than 2	r. Hence, there is a limited number of
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Fig. 3. Critical load for extensible rod as a function of the Euler buckling load.

critical loads, which in Case II happens to be equal to the maximum
integer smaller or equal to (�/2	r)= (1/2	

√
�). Thus, there will only

be five critical loads if � = 0.001 (slenderness ratio equal to 31.6)
and 15 critical loads if � = 0.0001 (slenderness ratio equal to 100).
Sampaio and Almeida [17] and Magnusson et al. [18] also refer to
similar findings.

4. Post-buckling regime: multiple-scales solution

Solution to (14), written as an asymptotic expansion

�(�) = ��1(�0,�1,�2, . . .) + �2�2(�0,�1,�2, . . .)

+ �3�3(�0,�1,�2, . . .) + . . . , (26)

is investigated via the method of multiple scales, adapting to non-
linear statics the technique described in [12] within the context of
non-linear dynamics. Instead of time scales, spatial scales will be
introduced accordingly:

�p = �p�, p = 0, 1, 2, . . . . (27)

The functions �q = �q(�0,�1,�2, . . .), q = 1, 2, . . ., will be determined
when equations of increasing orders of �, extracted from (14), are
solved and secular terms eliminated (i.e., solvability conditions im-
posed). The following derivative operators are introduced:

d
d�

= D0 + �D1 + �2D2 + �3D3 + . . . ,

d2

d�2 = D2
0 + �2D0D1 + �2(D2

1 + 2D0D2)

+ �3(2D0D3 + 2D1D2) + . . . ,

Dk
p = �k

��k
p

, k = 1 or 2, p = 0, 1, 2, . . . . (28)

Taking (26) and (28) in (14) and retaining terms of order �,
leads to

D2
0�1 + �1�1 = �0, (29)

whose solution, consistently to what has already been seen in (21),
is rewritten in the complex form

�1 = �0

�1
+ A exp(i

√
�1�0) + complex conjugate, (30)

where A is a complex function of �1,�2,�3, . . . .

Terms of order �2 in (14) are such that

D2
0�2 + �1�2 = −2D0D1�1. (31)

Notice that the term on the right-hand side of (31) leads to an un-
bounded solution for �2, contrary to what it is expected from the
proposed asymptotic expansion (26), according to which any new
term added should be a small correction to the accumulated ex-
pansion value. Therefore, to enforce that the expansion (26) be uni-
formly convergent, the right-hand side of (31), which is said to be a
secular term, must be eliminated, leading to the so-called solvability
condition D1�1 = 0 ⇒ A = A(�2,�3, . . .). It is further noticed that the
homogeneous solution for �2 may be considered as already included
in (30) and can thus be disregarded in what follows.

Terms of order �3 in (14) lead still to another differential equation

D2
0�3 + �1�3 = −2D0D2�1 − �2�2

1 − �3�3
1, (32)

for which the solvability condition (elimination of secular terms) is

−2i
√

�1D2A − 2�2

(
�0

�1

)
A − 3�3

(
�0

�1

)2

A − 3�3A2Ā = 0, (33)

where Ā is the complex conjugate of A. Solution of (33) will be
searched in the form

A = 1
2a exp(i
), a ∈ �, 
 ∈ �. (34)

It is found that D2a = 0 ⇒ a = a(�3, . . .) and


 = 
0 + 1√
�1

{
�2

(
�0

�1

)
+ 3�3

8

[
4
(

�0

�1

)2

+ a2
]}

�2. (35)

A particular solution of (32) is, therefore,

�3 = −
(

�2

�1

)[
1
2

(
�0

�1

)2

+ 1
4
a2

]
−

(
�3

�1

) (
�0

�1

)[
1
2

(
�0

�1

)2

+ 3
4
a2

]

+ 1
4

[
1
3

(
�2

�1

)
+

(
�3

�1

) (
�0

�1

)]
a2 exp[2i(��0 + 
0)]

+ 1
64

(
�3

�1

)
a3 exp[3i(��0 + 
0)] + complex conjugate, (36)

where

� = √
�1

{
1+

(
��0

�1

) (
��2

�1

)
+3
8

(
�3

�1

)[
4
(

��0

�1

)2

+(�a)2
]}

. (37)

Notice that in (36) there is no term in exp[i(��0 +
0)], since such a
term would belong to the homogeneous solution, which is already
included in (30).

Finally, from (30), (34) and (36), the post-buckling response up
to terms of order �3 is

�(�) =
(

��0

�1

)
−

(
��2

�1

) [(
��0

�1

)2

+ 1
2
(�a)2

]

−
(

�3

�1

) (
��0

�1

) [(
��0

�1

)2

+ 3
2
(�a)2

]

+ (�a) cos
(
�� + 
0

) + 1
2

[
1
3

(
��2

�1

)
+

(
�3

�1

)(
��0

�1

)]

× (�a)2 cos[2(�� + 
0)]

+ 1
32

(
�3

�1

)
(�a)3 cos[3(�� + 
0)]. (38)
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The derivative of � with respect to � will be useful for imposing the
boundary conditions:

d�
d�

(�) = − �(�a) sin(�� + 
0)

− �
[
1
3

(
��2

�1

)
+

(
�3

�1

) (
��0

�1

)]
(�a)2 sin[2(�� + 
0)]

− 3
32

�
(

�3

�1

)
(�a)3 sin[3(�� + 
0)]. (39)

The centroid displacements can be evaluated once �(�) and
d�/d�(�) are known. For the longitudinal displacement, from the
last of (1) and (10), it is found that

ū
�

=
∫ �

0
[(1 − p cos � + p� sin �) cos� − 1] d�. (40)

Using the power series approximations for cos � ≈ 1 − �2/2 and
sin � ≈ � − �3/6, (40) is re-written as

ū
�

= −p�+�p
∫ �

0
�d�−

(
1−2p
2

) ∫ �

0
�2 d�−2

3
�p

∫ �

0
�3 d�, (41)

which can be evaluated with the help of (38) and the boundary
conditions.

For the transversal displacements, from (8), it is found that

w̄
�

= w̄(1)
�

+ �
p

(
d�
d�

∣∣∣∣
1

− d�
d�

)
+ �

[(
1 + ū(1)

�

)
−

(
� + ū

�

)]

= �
p

(
d�
d�

∣∣∣∣
0

− d�
d�

)
− �

(
� + ū

�

)
, (42)

Fig. 4. Post-buckled configurations and maximum displacements for (a) p/pcr = 1.0105; (b) p/pcr = 1.2894; (c) p/pcr = 1.5158; (d) p/pcr = 2.5344.

which can be evaluated with the help of (39) and (41), the boundary
conditions and the displacements at either � = 1 or 0. Notice that
from (37)

�a =
√
8
3

(
�1

�3

) [
�√
�1

− 1 −
(

��0

�1

)(
��2

�1

)]
− 4

(
��0

�1

)2

. (43)

The determination of the amplitude �a, as in (43), is a key step
that can only be achieved once � has been obtained after the impo-
sition of the boundary conditions. In Case V, there is an additional
difficulty, since �a depends on �, which has to be determined iter-
atively, as it will be seen in Section 9. It is worth mentioning that
the multiple-scales solution, in general, and expressions (37)–(43),
in particular, are valid for whichever Case I–V is considered, pro-
vided the appropriate boundary conditions are used. Each one of
these cases will be examined in detail in what follows.

5. Case I: clamped-free beam-column

The boundary conditions (22) for Case I are

�(0) = (�a) cos 
0 + 1
32

(
�3

�1

)
(�a)3 cos 3
0 = 0, (44)

d�
d�

(1) = − �(�a) sin(� + 
0)

− 3
32

�
(

�3

�1

)
(�a)3 sin[3(� + 
0)] = 0, (45)

from which, for the first buckling mode, it is found that 
0 = 	/2 and
� = 	/2. The first normalised critical load, from (24), is pcr=0.002474,
for � = 0.001. For loads p > pcr , displacements can be found from
(38), (39), (41)–(43), recalling that ��0 = ��2 =0. Fig. 4 displays post-
buckled configurations for distinct values of p > pcr .
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Fig. 5. Post-buckled configurations and maximum displacements for (a) p/pcr = 1.2037 (first mode); (b) p/pcr = 5.0155 (first mode); (c) p/pcr = 5.0155 (second mode);
(d) p/pcr = 8.0249 (second mode).

6. Case II: hinged–hinged beam-column

The boundary conditions (22) for Case II are

d�
d�

(0) = −�(�a) sin 
0 − 3
32

�
(

�3

�1

)
(�a)3 sin 3
0 = 0, (46)

d�
d�

(1) = − �(�a) sin(� + 
0)

− 3
32

�
(

�3

�1

)
(�a)3 sin[3(� + 
0)] = 0, (47)

from which, for the first buckling mode, it is found that 
0 = 0 and
�=	. The first normalised critical load, from (24), is pcr =0.009969,
for �=0.001. By the way, the number of critical loads is here limited
to five. For loads p > pcr , displacements can be found from (38), (39),
(41)–(43), recalling that ��0 = ��2 = 0. Fig. 5 displays post-buckled
configurations for distinct values of p > pcr .

7. Case III: clamped–clamped beam-column

The boundary and symmetry conditions (22) for Case III are

�(0) = (�a) cos 
0 + 1
32

(
�3

�1

)
(�a)3 cos 3
0 = 0, (48)

�
(
1
2

)
= (�a) cos

(�
2

+ 
0

)

+ 1
32

(
�3

�1

)
(�a)3 cos

[
3

(�
2

+ 
0

)]
= 0, (49)

from which, for the first buckling mode, it is found that 
0 =	/2 and
�=2	. The first normalised critical load, from (24), is pcr =0.041174,
for � = 0.001. For loads p > pcr , displacements can be found from

(38), (39), (41)–(43), recalling that ��0 = ��2 =0. Fig. 6 displays post-
buckled configurations for distinct values of p > pcr .

8. Case IV: clamped-guided bar

The boundary conditions (22) for Case IV are

�(0) = (�a) cos 
0 + 1
32

(
�3

�1

)
(�a)3 cos 3
0 = 0, (50)

�(1) = (�a) cos(� + 
0) + 1
32

(
�3

�1

)
(�a)3 cos[3(� + 
0)] = 0, (51)

from which, for the first buckling mode, it is found that 
0 =	/2 and
�=	. The first normalised critical load, from (24), is pcr =0.009969,
for � = 0.001. For loads p > pcr , displacements can be found from
(38), (39), (41)–(43), recalling that ��0 = ��2 =0. Fig. 7 displays post-
buckled configurations for distinct values of p > pcr .

9. Case V: clamped–hinged beam-column

The boundary conditions (22) for Case V are

�(0) =
(

��0

�1

)
−

(
��2

�1

) [(
��0

�1

)2

+ 1
2
(�a)2

]

−
(

�3

�1

)(
��0

�1

) [(
��0

�1

)2

+ 3
2
(�a)2

]
+ (�a) cos 
0

+ 1
2

[
1
3

(
��2

�1

)
+

(
�3

�1

) (
��0

�1

)]
(�a)2 cos 2
0

+ 1
32

(
�3

�1

)
(�a)3 cos 3
0 = 0, (52)
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Fig. 6. Post-buckled configurations and maximum displacements for (a) p/pcr = 1.1980; (b) p/pcr = 2.3960.

Fig. 7. Post-buckled configurations and maximum displacements for (a) p/pcr = 1.2037; (b) p/pcr = 1.8056.

d�
d�

(1) = − �(�a) sin(� + 
0)

− �
[
1
3

(
��2

�1

)
+

(
�3

�1

)(
��0

�1

)]
(�a)2 sin[2(� + 
0)]

− 3
32

�
(

�3

�1

)
(�a)3 sin[3(� + 
0)] = 0, (53)

from which, for the first buckling mode, it is found that �+
0=	, 
0
being a solution of (52). The first normalised critical load, from (24),
is pcr = 0.020615, for � = 0.001. It should be recalled that here � is
non-null in the post-buckling solution, on account of an equilibrium
requirement. Notice that for each value of p > pcr , an iteration scheme
is necessary to evaluate � from (17), ��0 and ��2 from (15), 
0 from
(52), � = 	 − 
0, �a from (43), �(�) from (38), d�/d�(�) from (39),
ū(�)/� from (41), w̄(�)/� from (42), � from (17), etc., until convergence
has been attained. Fig. 8 displays post-buckled configurations for
distinct values of p > pcr .

10. Numerical integration

The solution obtained by numerical integration of (12) and (40)
is now discussed in this section. For Cases I–IV, since � = 0, these
equations are uncoupled, which means that we could integrate (12)
to obtain �(�) and then (40) to obtain ū(�)/�. Nevertheless, for Case
V, since �=EI�′(0)/P�(1+ū(1)/�)�0, these equations are coupled and
must be integrated simultaneously. As for w̄(�)/�, it can be evaluated
from (42) in any Case. Since this is not a truly initial-value problem,
the fourth-order Runge–Kutta method is not strictly applicable. Yet,
it is possible to adapt it in such a way that initial conditions will be

imposed for all �(0), d�/d�(0) and ū(0)/�, even when one of the first
two is not strictly a boundary condition, and the integration will pro-
ceed for increasing values of �. Once �(1), d�/d�(1) and ū(1)/� are
determined, the boundary conditions at this section can be checked.
If they are not satisfied to a certain prescribed small tolerance, an
iterative scheme will be required. Note that in Case V, even for the
first iteration it is necessary to impose also ū(1)/�, to have an initial
value for �, both of which values must also converge along the iter-
ative scheme. That is why Case V poses a more complicated conver-
gence pattern. Table 1 displays some results correlating numerical
integration and multiple scales results.

Multiple scales results for the maximum transversal displace-
ment, as seen in Table 1, present deviations not larger than 1.5% with
respect to the supposedly more accurate results coming out from
the numerical integration of the exact Eqs. (12) and (40), for loads
20% larger than the critical one for the corresponding Case I–IV. For
Case V, small deviations (2%) were still observed for a load 6.72%
larger than the critical one. Deviations are seen to be larger when
axial displacements are compared: up to 8.1%, for loads 20% larger
than the critical one for the corresponding Case I–IV; and 11.7% for
Case V, for a load 6.72% larger than the critical one. For higher loads,
comparison was not possible in Case V, since convergence was not
achieved in the iterative numerical integration scheme, although the
multiple-scales solution was still available.

11. Effect of load offsets

It is well known that Euler buckling is imperfection insensitive,
since it corresponds to a stable symmetric bifurcation [6,7]. In other
words, small imperfections, such as load offsets, “round off” the
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Fig. 8. Post-buckled configurations and maximum displacements for (a) p/pcr = 1.0187; (b) p/pcr = 1.0672; (c) p/pcr = 1.1157; (d) p/pcr = 2.4254.

Table 1
Correlation between numerical integration and multiple scales results for � = 0.001.

Case I II III IV V

p/pcr 1.213 1.204 1.214 1.204 1.0672
A = (w̄/�)max numerical integration 0.661 0.326 0.331 0.652 0.248
B = (w̄/�)max multiple-scales 0.651 0.323 0.333 0.645 0.253
B/A 0.985 0.991 1.006 0.989 1.020
C = ū�/� numerical integration −0.346 −0.343 −0.396 −0.343 −0.206
D = ū�/� multiple-scales −0.371 −0.367 −0.428 −0.367 −0.230
D/C 1.072 1.070 1.081 1.070 1.117

equilibrium trajectories close to the bifurcation point and have cor-
respondingly small effects on the post-buckling displacements.

For the sake of an illustration of the formulation generality, a load
offset e is here considered for the compressive force P in Cases I and
II, as indicated in Fig. 9. As a result of this imperfection, the value of
the moment at x = � must be equal to

M� = Pe = −EI�′(�) ⇒ d�
d�

(1) = −p
�

(
e
�

)
. (54)

Therefore, for Case I, although (44) remains valid and implies that
for the first buckling mode 
0 = 	/2, as for the perfect system, the
other boundary condition (45) should now be replaced by

d�
d�

(1) = − �(�a) sin(� + 
0)

− 3
32

�
(

�3

�1

)
(�a)3 sin[3(� + 
0)] = −p

�

(
e
�

)
, (55)

so that � is no longer equal to 	 − 
0 = 	/2 and must be evaluated
from (55) for a given � = e/�.

Fig. 10 displays the post-buckling equilibrium trajectories (w̄�/�)×
p for both perfect (� = 0) and imperfect systems (� = 0.01) in Case
I. As anticipated, minor deviations are noticed.

Fig. 9. Load offset in Cases I and II.

For cases in which a transversal reaction could come into play,
besides affecting a boundary condition, the load offset would also
modify the value of �. For instance, in Case II, the value of �, which
was zero for the perfect system, now becomes

� = R
P

= − EI�′(�)

P�
(
1 + ū�

�

) = −
d�
d�

(1)

p
�

(
1 + ū�

�

) = �(
1 + ū�

�

) . (56)

Since � depends on ū�/�, an iterative scheme is necessary to
obtain the results. Table 2 displays the ratio between the maxi-
mum transversal displacement (w̄/�)max for the imperfect system
(� = 0.01) and the corresponding value of the perfect system
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Fig. 10. Post-buckling equilibrium trajectories for the perfect (� = 0) and imperfect
(� = 0.01) beam-column of Case I.

Table 2
Ratio of the maximum transversal displacement (w̄/�)max for the imperfect system
(� = 0.01) to the corresponding value of the perfect system (� = 0) in Case II.

p/pcr w̄max(� = 0.01)/w̄max(� = 0)

First mode Second mode

1.2037 1.0083 –
5.0155 1.0341 0.9986
8.0249 – 1.0107

(� = 0) in Case II, for a few values of p/pcr, considering either the
first or second buckling modes.

Again, very small deviations are observed, confirming the modest
imperfection sensitivity of the post-buckling regime.

12. Conclusions

Very accurate analytical estimates for the post-buckled displace-
ments of slender beam-columns were achieved in this study, well
above the critical load, for any one of the classical Euler's cases. The
excellence of these results should be attributed to the combination
of an efficient perturbation method—though one rarely used in non-
linear statics—with an elegant and powerful equilibrium formula-
tion in terms of cross-section rotations—though the one based on
transversal displacements is commonplace in the literature. In fact,
the multiple scales method, so widely used in non-linear dynamics,
proves to be far superior to the classic straightforward procedure
(Poincaré's method). It is also remarkable that the results can be
shown to be much more accurate for the formulation in terms of
rotation, than for the one based on transversal displacements, for
the same order of truncation of non-linearities in the equation of
motion. It suffices to recall that when this latter has been used in the

post-buckling analysis of the pinned–pinned inextensible strut, ac-
curate power-series estimates could only be achieved for loads up
to 1.5% above the critical one [3], whereas here, even for the more
complex case of an extensible beam-column, the same degree of ac-
curacy was found for loads as high as 20% above the critical value.

Beyond the purely quantitative perspective, the synthesis ex-
pressed by the analytical solution (38)–(43), which is valid for
whichever boundary condition should be used in each one of the five
Euler's Cases, is in itself an achievement, so as to recall that, even
in a topic as extensively studied as the buckling and post-buckling
analysis of elastic rods, there is still room for new insights.
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