

CHAPTER

Approximation! Remember, an anti-bonding MO is more anti-bonding then a bonding is bonding

5. Molecular Orbítals The significance of c_a and c_b in: $\Psi_{A-B} = c_a \Psi_a$ $\pm c_b \Psi_b$ antíbonding bonding В A - BВ А A - BA - AA А А Equal energies Unequal energies Very unequal energies ... there can be non-bonding orbitals as well!

5. Molecular Orbítals

5.2 Homonuclear Díatomíc Molecules

NOTE: Oxygen-oxygen distances in O_2^{-} and O_2^{2-} are influenced by the cation. This influence is especially strong in the case of O_2^{2-} and is one factor in its unusually long bond distance.

5.2 Homonuclear Diatomic Molecules

5.2 Homonuclear Díatomíc Molecules

5.3 Ioníc Compounds & Molecular Orbítals

5.4 Molecular Orbítals for Larger Molecules

5.4 Molecular Orbitals for Larger Molecules

5.4 Molecular Orbítals for Larger Molecules

5.4 Molecular Orbítals for Larger Molecules

5.4 Molecular Orbítals for Larger Molecules

