

UNIVERSIDADE DE SÃO PAULO Escola Superior de Agricultura "Luiz de Queiroz" Departamento de Ciência do Solo

LSO - 0257 - Fundamentos de Ciência do Solo

Prof. Dr. Tiago Osório Ferreira Prof. Dr Antonio Roque Dechen Prof. Dr. Quirino Augusto de Camargo Carmello

> Piracicaba 2017

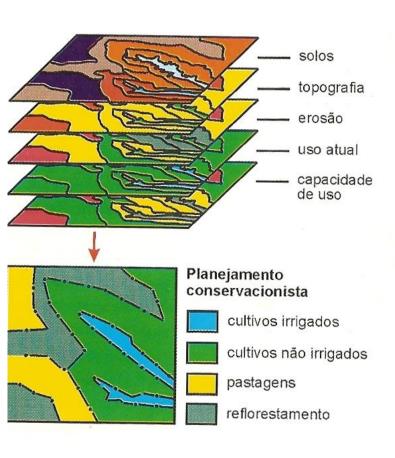
CLASSIFICAR

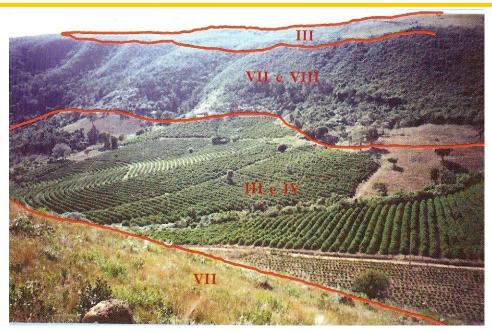
"Distribuir em classes e/ou grupos segundo sistema ou método de classificação"

2 TIPOS

- Classificações técnicas ou interpretativas
- Classificações naturais ou taxonômicas

Classificações técnicas ou interpretativas:


Estabelece grupos de indivíduos para uma finalidade específica.



Sistema Brasileiro de Capacidade de Uso Sistema de Avaliação da Aptidão Agrícola das Terras Sistema Brasileiro de Classificação de Terras para Irrigação Avaliação da Susceptibilidade à Erosão das Terras

I. INTRODUÇÃO

	Aumento da intensidade do uso							
Classe de capacidade de uso	Vida silvestre e ecoturismo	Refloresta-	Pastoreio		Cultivo			
		mento	Moderado	Intensivo	Restrito	Moderado	Intensivo	Muito intensivo
-1	Apto para too	dos os usos. C) cultivo exige a	apenas práticas	s agricolas ma	is usuais.		
II	Apto para todos os usos, mas práticas de conservação simples são necessárias se cultivado.							
III	Apto para todos os usos, mas práticas intensivas de conservação são necessárias para cultivo.							
IV	Apto para vārios usos, restrições para cultivos.							
٧	Apto para pastagem, reflorestamento ou vida silvestre.							
VI	Apto para pastagem extensiva, reflorestamento ou vida silvestre.							
VII	Apto para reflorestamento ou vida silvestre. Em geral, inadequado para pasto.							
VIII	Apto, às vezes, para produção de vida silvestre ou recreação. Inapto para produção econômica agrícola, pastagem ou material florestal.							

Classificações naturais ou taxonômicas:

Organizar o conhecimento sem referências a um objetivo específico.

Sistema Brasileiro de Classificação de Solos

II. BREVE HISTÓRICO DA CLASSIFICAÇÃO E DO SIBCS

NO BRASIL ...

- Início 1947 Comissão de Solos (SNPA)→ o inventário nacional
- RJ (1958) e SP (1960): baseada nas aproximações americanas
- Baldwing et al. (1938) e Thorp & Smith (1949)

Regossolo, Solo Aluvial, Solonchak, Solonetz, Planossolo, Gleissolo, Brunizém, Brunizém Avermelhado, Podzol, Solo Bruno Não Cálcico,

II. BREVE HISTÓRICO DA CLASSIFICAÇÃO E DO SIBCS

Avanço de conhecimentos

INADEQUAÇÕES

DEMANDA

PODZÓLICO VERMELHO AMARELO-variação
Piracicaba. Classificação:

Localização: — Município de Leme, na estrada Araras-Núcleo República, a 21,6 km de Araras.

Situação: — Corte de estrada situado em meia encosta de elevação com declive de 5 a 10%.

Altitude: — 720 metros.

Relêvo: — Ondulado.

Material de origem: — Argilitos ou folhelhos.

Cobertura vegetal: — atual — Gramineas.

primária — Provàvelmente Floresta latifoliada tropical semidecídua.

Drenagem: — Moderadamente drenado.

- 0 23 cm; bruno escuro (10YR 4/3); "sandy loam"; macica que se desfaz em moderada média granular; ligeiramente duro, friável, ligeiramente plástico e ligeiramente pegajoso; transição abrupta e plana; raízes abundantes.
- 23 44 cm; bruno avermelhado (5YR 4/4); "clay"; modera- \mathbf{B}_{i} da pequena a média blocos subangulares; cerosidade fraca e pouca; duro, firme, plástico e pegajoso; transição gradual e plana; raízes escassas,
- B₂₁ 44 58 cm; bruno avermelhado (5YR 4/4); mosqueado vermelho amarelado (5YR 4/6), abundante, pequeno e difuso; "clay"; forte pequena a média blocos subangulares; cerosidade fraca e pouca; duro, firme, plástico e pegajoso; transição gradual e plana; raízes escassas,

Classificação: — TERRA ROXA ESTRUTURADA.

Localização: — Municipi da para Piraju.

Situação: — Corte de estrada situado no topo de uma elevação com declive de 5%

Altitude: — 580 metros.

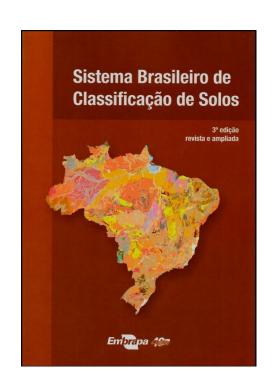
Relêvo: — Ondulado.

Material de origem: — Basaltito.

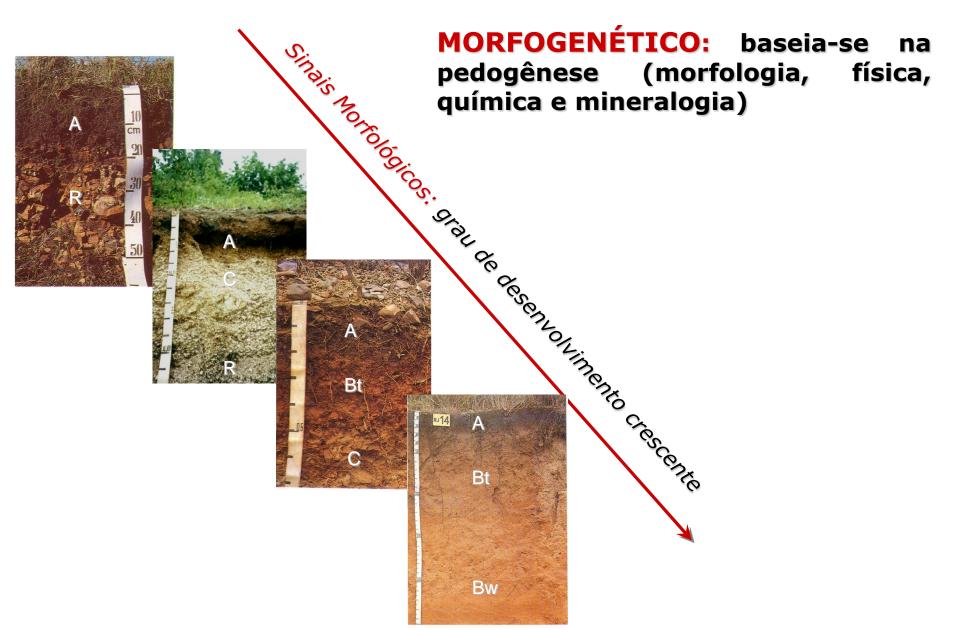
Cobertura vegetal: — atual — Cafèzal

primária — Floresta latifoliada tropical.

Drenagem: — Bem drenado.


A, 0 ---19 cm; bruno avermelhado escuro (2.5YR 3/4, úmido); bruno avermelhado escuro (2.5YR 3/4, molhado amassado); vermelho escuro (2.5YR 3/6, sêco); vermelho amarelado (5YR 4/7, sêco triturado); "clay"; forte pequena a média blocos subangulares; muito duro, muito firme, plástico e ligeiramente pegajoso; transição clara e plana; raízes abundantes.

19 — В., 80 cm; vermelho escuro (2.5YR 3/6, úmido); vermelho escuro (2.5YR 3/6, molhado amassado); vermelho escuro (2.5YR 3/6, sêco); vermelho amarelado (5YR 4/7, sêco triturado); "clay"; forte pequena a média blocos subangulares; cerosidade forte e abundante; ligeiramente duro, firme, plástico e ligeiramente pegajoso; transição clara e plana; raizes abundantes.



II. BREVE HISTÓRICO DA CLASSIFICAÇÃO E DO SIBCS

- 1978 SNLCS → Comissão de Classificação
- "Desenvolvimento do Sistema Brasileiro de Classificação de Solos"
- 03 aproximações (1980, 1981 e 1988): reservado
- 1995: retomada com participação da comunidade científica
 - ✓ Comitê Executivo
 - ✓ Comitê Assessor Nacional e
 - ✓ Comitês Regionais
- 1999: 1^a Edição
- 2006: 2ª Edição
- 2013: 3^a Edição

ABERTO: acréscimo e retirada de informações

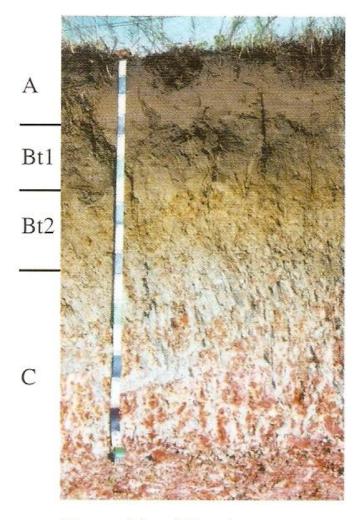


Figura 14 - Alissolo Hipocrômico argilúvico típico (Unidade Santa Maria).

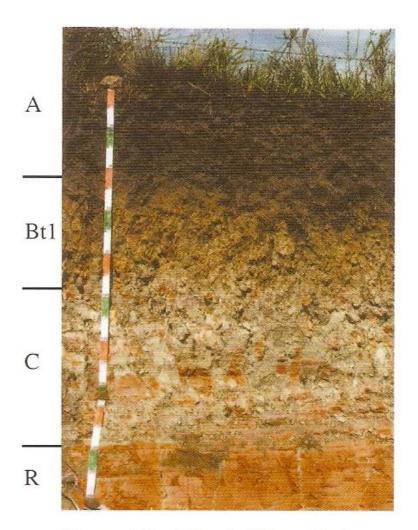


Figura 16 - Alissolo Hipocrômico argilúvico típico com contato lítico (Unidade Santa Maria).

COMITÊ EXECUTIVO

Américo Pereira de Carvalho	Aposentado
Humberto Gonçalves dos Santos 1	Embrapa Solos (Coordenador)
Idarê Azevedo Gomes	Aposentado
João Bertoldo de Oliveira	Aposentado - Pesq. Voluntário/IAC
José Francisco Lumbreras	Embrapa Solos
Lúcia Helena Cunha dos Anjos	Dep. De Solos - UFRRJ
Maurício Rizzato Coelho	Embrapa Solos
Paulo Klinger Tito Jacomine	Aposentado - Prof. Visitante UFRPE
Pedro Jorge Fasolo	Aposentado
Tony Jarbas Ferreira Cunha	Embrapa Semiárido
Virlei Álvaro de Oliveira	IBGE

COMITÉ ASSESSOR NACIONAL

Francesco Palmieri	Gênese/Morfologia/Classif. de Solos
João Carlos Ker	Gênese/Morfologia/Classif. de Solos
Joelito de Oliveira Rezende	Manejo de Solos
Lucedino Paixão Ribeiro	Gênese/Morfologia/Classif. de Solos
Luiz Bezerra de Oliveira	Física de Solos
Mauro Carneiro dos Santos	Mineralogia/Micromorfologia Solos
Nestor Kämpf	Mineralogia de Solos - Porto Alegre
Osmar Muzzili	Manejo e Conservação de Solos
Otávio Camargo	Química de Solos

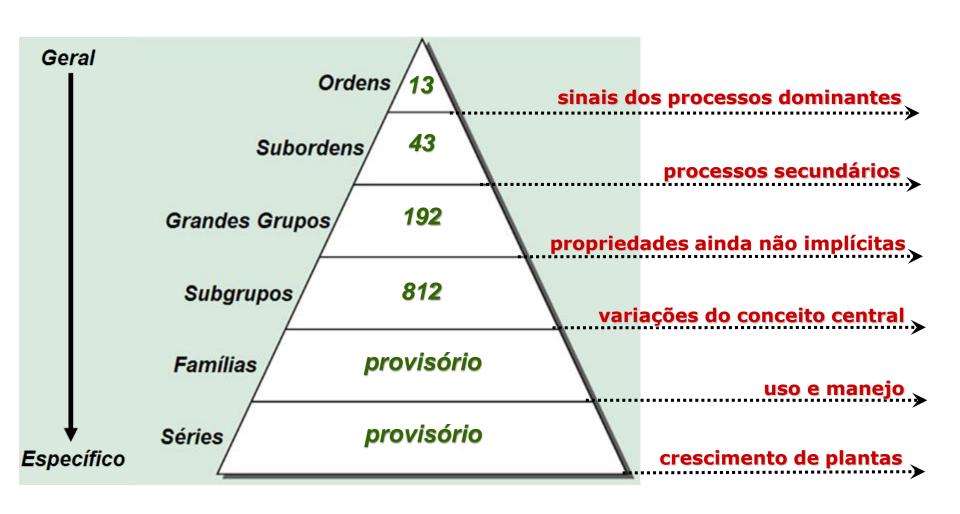
Coordenadores dos Comitês Regionais

Gustavo Ribas Cúrcio	(Embrapa Florestas)	Região Sul
Mateus Rosas Ribeiro	(UFRPE)	Região Nordeste
Pablo Vidal Torrado	(ESALQ)	Região Sudeste
Roberto das Chagas Sil	va (IBGE)	Região Norte
Virlei Álvaro de Oliveira	(IBGE)	Região Centro - Oeste

HIERÁRQUICO: classes organizadas em diferentes níveis

3.3 LATOSSOLOS VERMELHOS Acriférricos

- 3.3.1 LATOSSOLOS VERMELHOS Acriférricos húmicos Solos com horizonte A húmico.
- 3.3.2 LATOSSOLOS VERMELHOS Acriférricos petroplínticos Solos com caráter litoplíntico ou concrecionário ou horizonte litoplíntico e/ou horizonte concrecionário em condição não diagnóstica para Plintossolo, dentro de 200 cm da superfície do solo (Oliveira 1999a, p.67, perfil IAC 1.447).
- 3.3.3 LATOSSOLOS VERMELHOS Acriférricos típicos
 Outros solos que não se enquadram nas classes anteriores.


3.4 LATOSSOLOS VERMELHOS Distroférricos

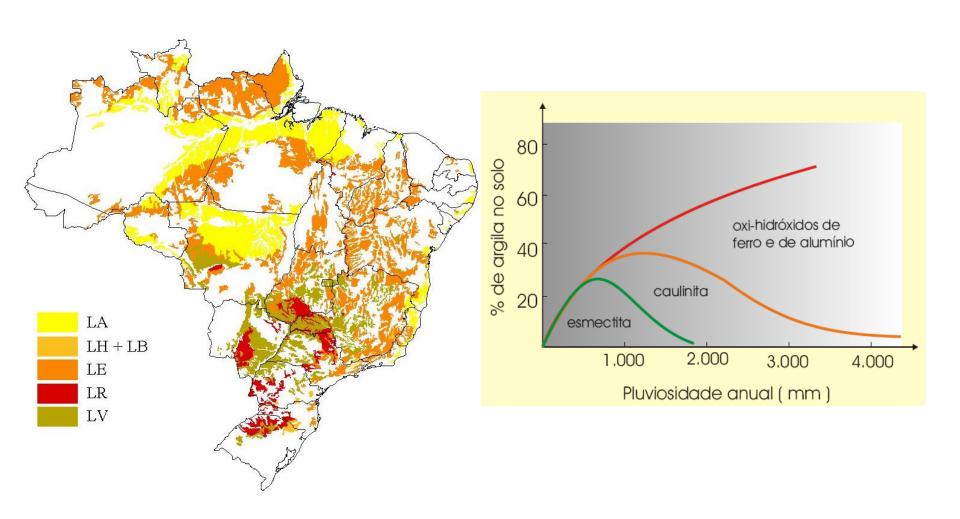
3.4.1 LATOSSOLOS VERMELHOS Distroférricos húmicos Solos com horizonte A húmico.

MULTICATEGÓRICO: 06 níveis categóricos

Nomenclatura	Etimologia	Características associadas
ARGISSOLOS	Do latim <i>argilla</i> , conotando solos com processo de acumulação de argila.	Horizonte B textural
CAMBISSOLOS	Do latim <i>cambiare</i> , trocar; conotativo de solos em formação (transformação).	Horizonte B incipiente
CHERNOSSOLOS	Do russo <i>chern</i> , negro; conotativo de solos ricos em matéria orgânica, com coloração escura.	A chernozêmico. Preto, rico em bases
ESPODOSSOLOS	Do grego <i>spodos</i> , cinza vegetal, solos com horizonte de acumulação de materiais orgânicos e outros.	Horizonte B espódico
GLEISSOLOS	Do russo <i>gley</i> , massa de solo pastosa; conotativo de excesso de água.	Horizonte glei
LATOSSOLOS	Do latim <i>lat</i> , material altamente alterado (tijolo); conotativo de elevado conteúdo de sesquióxidos.	Horizonte B latossólico
LUVISSOLOS	Do latim <i>luere,</i> lavar; conotativo de acumulação de argila.	Saturado. Acumulação de argila Ta (alta atividade)
NEOSSOLOS	Do grego <i>néos</i> , novo, moderno; conotativo de solos jovens, em início de formação.	Pequeno desenvolvimento
NITOSSOLOS	Do latim <i>nitidus</i> , brilhante; conotativo de superfícies brilhantes em unidades estruturais.	Horizonte B nítico
ORGANOSSOLOS	Do grego <i>organikós</i> , pertinente ou próprio dos compostos de carbono. Conotativo de solos de constituição orgânica, ambientes de grande umidade.	Horizonte H ou O hístico
PLANOSSOLOS	Do latim <i>planus</i> , plano, horizontal; conotativo de solos desenvolvidos com encharcamento superficial estacional.	Horizonte B plânico
PLINTOSSOLOS	Do grego <i>plinthos</i> , ladrilho; conotativo de materiais argilosos, coloridos, que endurecem quando expostos.	Horizonte plíntico
VERTISSOLOS	Do latim <i>vertere</i> ; conotativo de movimento na superfície do solo (expansão/contração).	Horizonte vértico

HORIZONTES E ATRIBUTOS DIAGNÓSTICOS: "tijolos"/ alicerce do Sistema

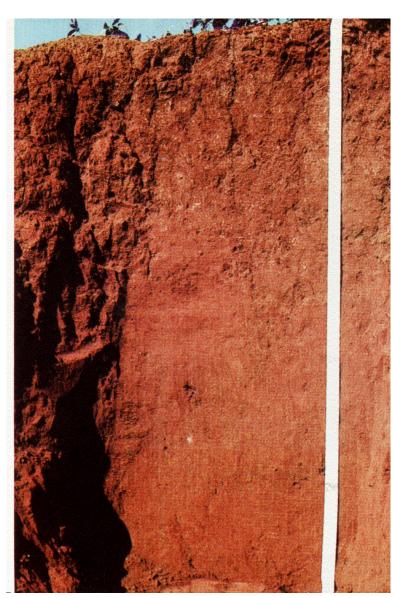
- √ 39 Atributos diagnósticos;
- √ 9 Outros atributos
- √ 7 Horizontes diagnósticos de superfície;
- √ 17 Horizontes diagnósticos de subsuperfície.

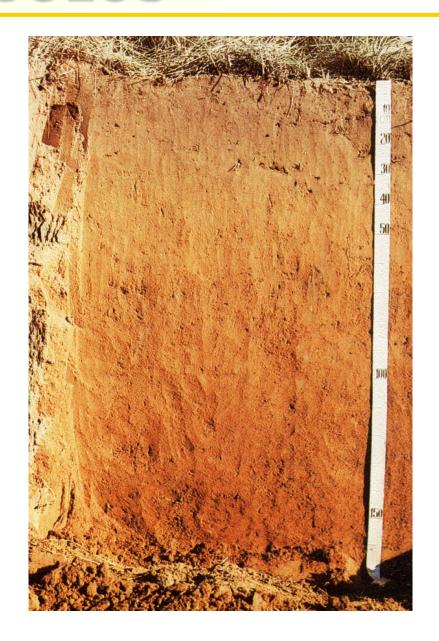


Quadro 2. Área e percentual de ocorrência das Ordens de solos¹, corpos d'água e tipos de terreno, em ordem decrescente, no território brasileiro

Ordens de solo	Área		
	km²	%	
Latossolos	2.691.563	31,61	
Argissolos	2.281.135	26,79	
Neossolos	1.130.776	13,28	
Plintossolos	580.715	6,82	
Cambissolos	462.358	5,43	
Gleissolos	391.684	4,60	
Luvissolos	239.268	2,81	
Planossolos	235.011	2,76	
Espodossolos	168.595	1,98	
Nitossolos	102.179	1,20	
Chernossolos	39.168	0,46	
Vertissolos	17.881	0,21	
Organossolos	2.544	0,03	
Águas	156.674	1,84	
Afloramento de Rocha (AR)	11.069	0,13	
Dunas	4.257	0,05	
TOTAIS	8.514.877	100,00	

HORIZONTE B LATOSSÓLICO





- Transição: difusas e graduais;
- Cores: de vermelhos a amarelos;
- Textura: média a mto argilosa (sem variação em profundidade);
- Destituídos de minerais alteráveis
- Profundos, porosos, macios e permeáveis;
- ≠s texturas, teor de óxidos e fertilidade.

- O 11 cm, bruno-avermelhado-escuro (2,5YR 3/4, úmido), vermelho-escuro (3,5YR 3/6, úmido amassado) e vermelho (2,5YR 4/6, seco e 3,5YR 4/6, seco triturado); muito argilosa; fraca pequena blocos subangulares e forte pequena e média granular; friável, plástica e pegajosa; transição gradual e plana.
- A2 11 26 cm, bruno-avermelhado-escuro (2,5YR 3/4, úmido), vermelho-escuro (3,5YR 3/6, úmido amassado) e vermelho (2,5YR 4/6, seco e 3,5YR 4/6, seco triturado); muito argilosa; forte muito pequena granular e fraca pequena blocos subangulares; friável, plástica e pegajosa; transição gradual e plana.
- AB 26 41 cm, bruno-avermelhado-escuro (2,5YR 3/4, úmido) e vermelho (3,5YR 4/6, úmido amassado, 2,5YR 4/6, seco e 3,5YR 4/6, seco triturado); muito argilosa; forte muito pequena granular; muito friável, plástica e pegajosa; transição difusa e plana.
- BA 41 63 cm, vermelho-escuro (2,5YR 3/5, úmido) e vermelho (3,5YR 4/6, úmido amassado); muito argilosa; fraca pequena e média blocos subangulares que se desfaz em forte muito pequena granular; muito friável, plástica e pegajosa; transição difusa e plana.
- B 1 63 122 cm, vermelho-escuro (2,5YR 3/6, úmido) e vermelho (3,5YR 4/6, úmido amassado); muito argilosa; fraca pequena e média blocos subangulares que se desfaz em forte muito pequena granular; macia, muito friável, plástica e pegajosa; transição difusa e plana.
- B 2 122 160 cm, vermelho-escuro (2,5YR 3/6, úmido) e vermelho (3,5YR 4/6, úmido amassado); muito argilosa; fraca pequena e média blocos subangulares que se desfaz em forte muito pequena granular; muito friável, plástica e pegajosa; transição difusa e plana.
- B 3 160 200 cm⁺, vermelho-escuro (2,5YR 3/6, úmido) e vermelho (3,5YR 4/6, úmido amassado); muito argilosa; fraca pequena e média blocos subangulares que se desfaz em forte muito pequena granular; muito friável, plástica e pegajosa.

PERFIL VII RCC - 7 MG

NÚMERO DE CAMPO – PMG 07 DATA – 26.09.2002

LOCALIZAÇÃO, MUNICÍPIO, ESTADO E COORDENADAS – Rodovia BR-354, trecho Patos de Minas - Lagoa Formosa, 9,1 km após o entroncamento com a BR-365, que liga Pirapora a Patrocínio (2,4 km após o ribeirão Mata Burrinhos), 150 metros à direita da estrada. Lagoa Formosa, MG. 18°42'28"S e 46°27'13"WGr

SITUAÇÃO, DECLIVE E COBERTURA VEGETAL SOBRE O PERFIL – Trincheira em terço superior de encosta com aproximadamente 3% de declive, sob vegetação de cerrado, com muitos pequizeiros.

ALTITUDE - 890 metros.

LITOLOGIA - Tufitos e conglomerados cineríticos.

FORMAÇÃO GEOLÓGICA - Formação Mata da Corda.

CRONOLOGIA - Cretáceo.

MATERIAL ORIGINÁRIO – Produtos da decomposição das rochas supracitadas, com provável contribuição de materiais provenientes do intemperismo de rochas (siltitos, ardósias, calcários e dolomitos) da Formação Paraopeba, do Grupo Bambuí (Neoproterozóico).

PEDREGOSIDADE - Não pedregoso.

ROCHOSIDADE - Não rochoso.

RELEVO LOCAL - Plano.

RELEVO REGIONAL - Suave ondulado e plano.

EROSÃO - Não aparente.

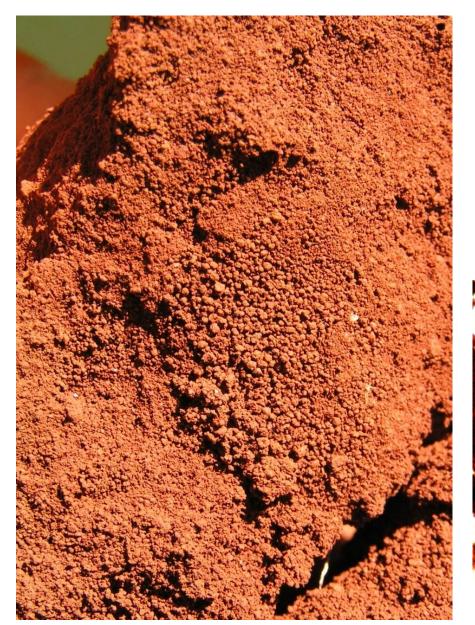
DRENAGEM - Acentuadamente drenado.

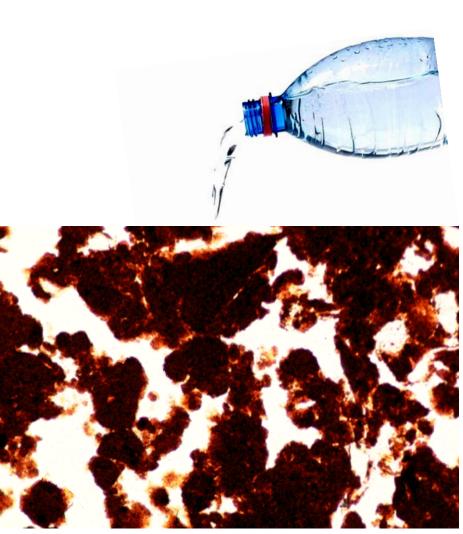
VEGETAÇÃO PRIMÁRIA - Cerrado tropical subcaducifólio.

USO ATUAL - Pastagem de braquiária e reserva da vegetação nativa no local da coleta.

CLIMA - Cwa, da classificação de Köppen.

Relevos com dominância de Latossolos





Bw: Agregados friáveis

Argila microagregada

Latossolos Férricos: os solos de rochas eruptivas básicas

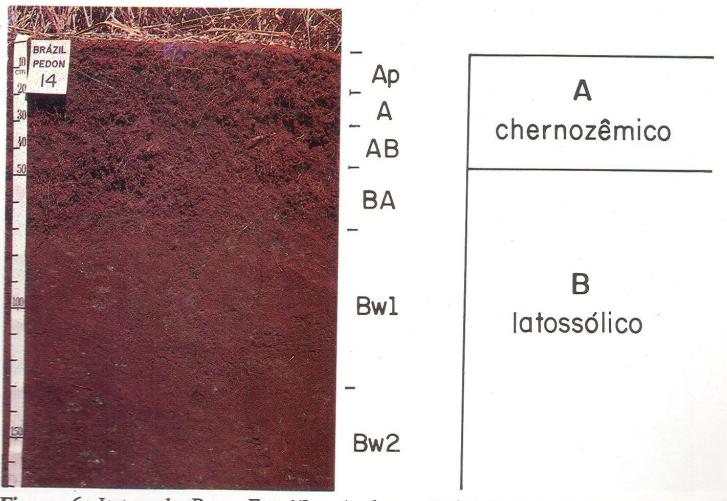


Figura 6. Latossolo Roxo Eutrófico A chernozêmico textura muito argilosa, originado de rochas efusivas básicas. Mun. Tupaciguara, MG. Foto M.N. Camargo.

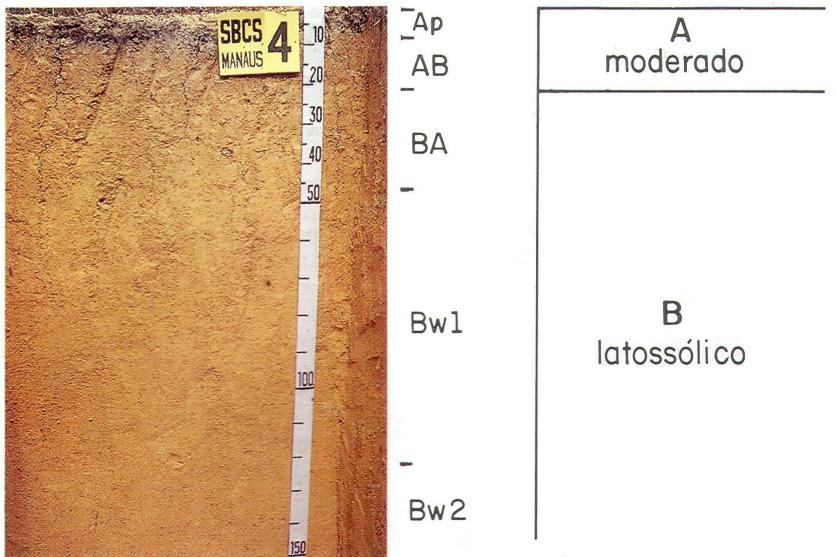
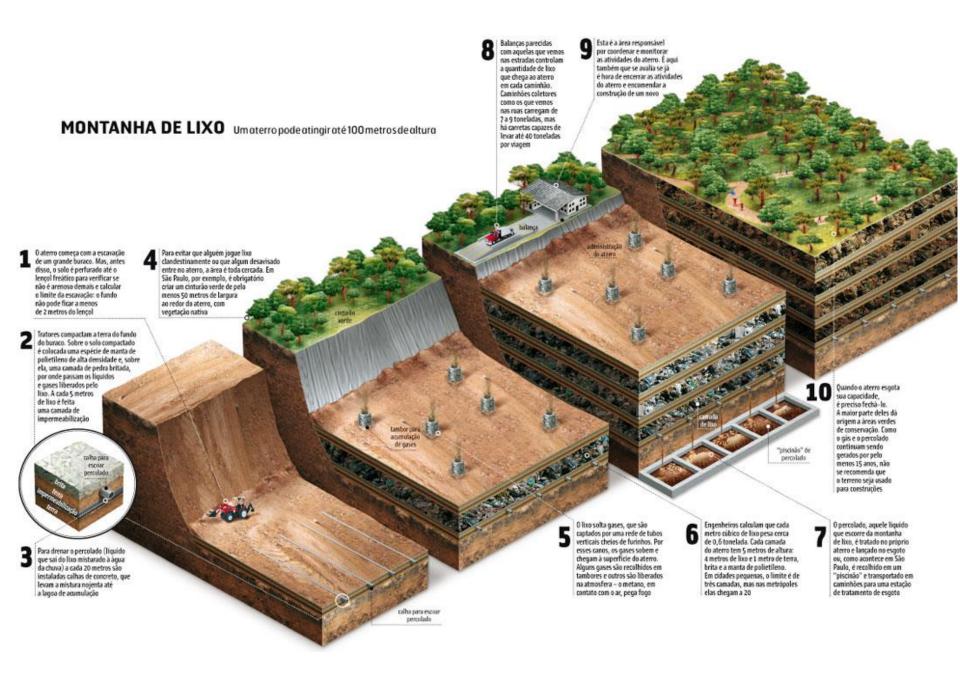


Figura 10. Latossolo Amarelo Álico A moderado textura muito argilosa, formado em cobertura de material argiloso. Mun. Manaus, AM. Foto M.N. Ca-



Permeabilidade

Sistema Radicular

Adubação

Fertilidade Variada

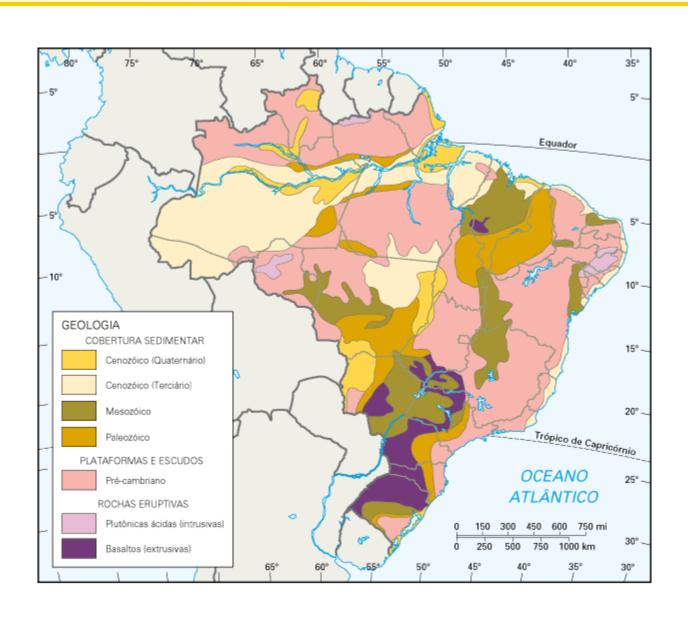
Quadro 6.2.1. Limitações para aterro sanitário e solos mais comuns na limitação severa.

Propriedade	Limitação			Observações gerais. Solos mais	
	Ligeira	Moderada	Severa	comuns na limitação severa	
Inundação	inexistente	raramente	comum	Solos situados em planícies aluviais sujeitas a inundações.	
Profundidade até rocha			< 200 cm	Pequena espessura: ampla relação custo/benefício. Neossolos Litólicos, Neossolos Regolíticos lépticos, Chernossolos Rêndzicos, grandes grupos de solos lépticos.	
Permeabilidade no assoalho da trincheira			> 5 cm hora ⁻¹	Contaminação do lençol freático. Neossolos Quartzarênicos, Neossolos Regolíticos psamíticos.	
Profundidade ato lençol freático	5		< 300 cm	Contaminação do lençol freático, pequeno volume da trincheira.	
Declividade (%)	< 8	8-15	> 15	Dificuldade de escavação e manutenção de estradas.	
Rochosidade (% superfície coberta)	< 20 classes ligeira a moderada- mente rochosas	20-40 classes moderada- mente rocho- sas a rochosas	> 40 classes muito a extremamen- te rochosas	Dificulta escavação e tráfego de máquinas.	
Salinidade. Cobertura final do aterro	ilan asprát 1 4.3 arin misoatecon badidades de arvores	caráter salino	caráter sálico	Limita o crescimento das plantas. Gleissolos sálicos. Grandes grupos de solos sálicos e subgrupos de solos sálicos e salinos. Nesses casos, em geral, material do horizonte A não apresenta limitação.	
pH. Cobertura final do aterro	eroaren er 19 dez arald	enternant Landon er	< 3,5	Limita o crescimento das plantas. Gleissolos tiomórficos, grande grupo de solos tiônicos.	
Textura para cobertura final	eten om t	able mass	argilosa, associada a argila de ati- vidade alta	Coesão elevada. Dificuldade de espalhamento. Fraturamento: odores, insetos, roedores. Vertissolos, solos Ta de textura argilosa.	
			arenosa	Erosão eólica. Neossolos Quartzarênicos,	

LATOSSOLOS

LATOSSOLO AMARELO Distrófico Psamítico

Quadro 2. Área e percentual de ocorrência das Ordens de solos¹, corpos d'água e tipos de terreno, em ordem decrescente, no território brasileiro


Ordens de solo	Área		
	km²	0/0	
Latossolos	2.691.563	31,61	
Argissolos	2.281.135	26,79	
Neossolos	1.130.776	13,28	
Plintossolos	580.715	6,82	
Cambissolos	462.358	5,43	
Gleissolos	391.684	4,60	
Luvissolos	239.268	2,81	
Planossolos	235.011	2,76	
Espodossolos	168.595	1,98	
Nitossolos	102.179	1,20	
Chernossolos	39.168	0,46	
Vertissolos	17.881	0,21	
Organossolos	2.544	0,03	
Águas	156.674	1,84	
Afloramento de Rocha (AR)	11.069	0,13	
Dunas	4.257	0,05	
TOTAIS	8.514.877	100,00	

- Ausência de gradiente textural;
- Bem estruturados, bem drenados e profundos;
- Horizonte B nítico;
- Cerosidade expressiva;
- Cores: Avermelhados a brunados;
- Textura: argilosa a muito argilosa;

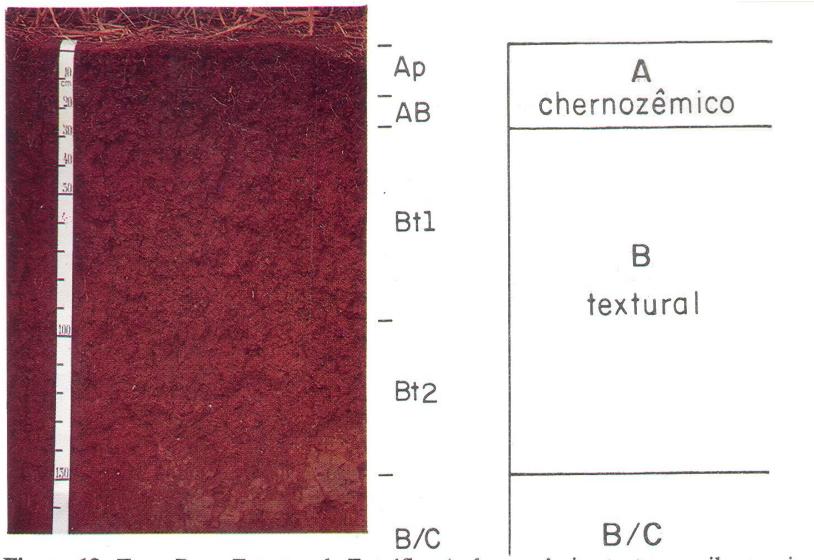
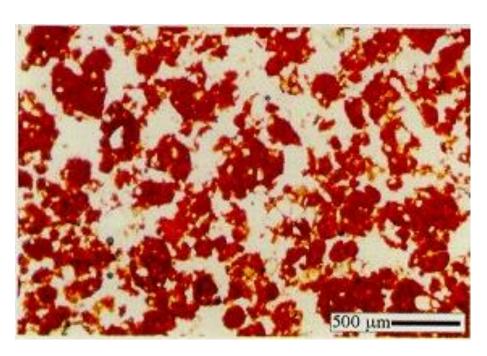
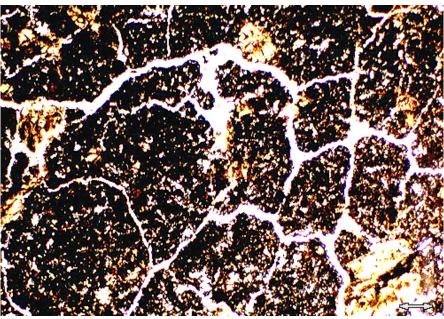
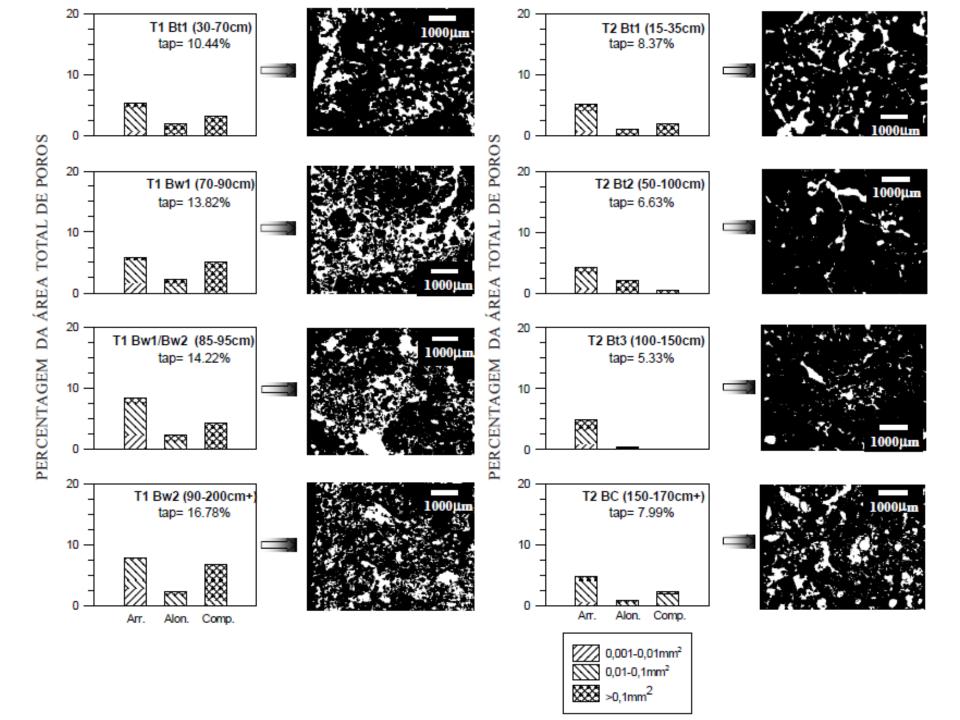


Figura 13. Terra Roxa Estruturada Eutrófica A chermozêmico textura argilosa, originada de rochas efusivas básicas. Por definição são solos Tb*. Mun. Jataizinho, PR. Foto M.N. Camargo.

- 0—17cm; bruno avermelhado escuro (5YR 3/3, úmido), bruno avermelhado escuro (5YR 3/4, seco); franco-argilosa; fraca pequena granular; muitos poros muito pequenos e pequenos e poucos médios e grandes; muito duro, friável, muito plástico e muito pegajoso; transição plana e clara.
- 17 30cm; bruno avermelhado escuro (5YR 3/4, úmido), bruno avermelhado (5YR 5/4, seco); argilo-arenosa; fraca pequena blocos subangulares; muitos poros muito pequenos e pequenos e poucos médios e grandes; muito duro, friável, muito plástico e muito pegajoso; transição plana e clara.
- 30 50cm; vermelho escuro (2,5YR 3/6, úmido), vermelho (2,5YR 4/6, seco); argilo-arenosa; fraca pequena blocos subangulares; muitos poros muito pequenos e poucos pequenos; cerosidade pouca e fraca; muito duro, friável, muito plástico e muito pegajoso; transição plana e gradual.
- 50—75cm; vermelho escuro (2,5YR 3/6, úmido), vermelho (2,5YR 4/6, seco); argila; fraca pequena blocos subangulares; muitos poros muito pequenos e poucos pequenos; cerosidade comum e moderada; ligeiramente duro, muito friável, muito plástico e muito pegajoso; transição plana e difusa.
- 75—160cm; vermelho escuro (2,5YR 3/6, úmido), vermelho (2,5YR 4/8, seco); argila; moderada grande prismática composta de fraca pequena blocos subangulares; muitos poros muito pequenos e pequenos; cerosidade abundante e moderada; ligeiramente duro, muito friável, muito plástico e muito pegajoso; transição plana e gradual.
- 160—180cm+; vermelho (2,5YR 4/6, úmido), vermelho (2,5YR 5/8, seco); argila; moderada grande prismática composta de moderada pequena blocos subangulares; muitos poros muito pequenos e pequenos; cerosidade abundante e moderada; duro, friável, muito plástico e muito pegajoso.

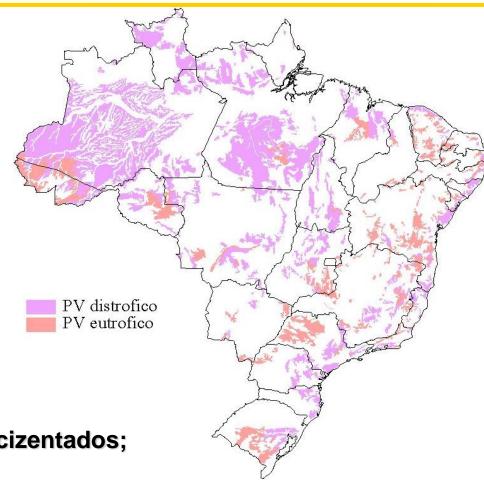






Quadro 2. Área e percentual de ocorrência das Ordens de solos¹, corpos d'água e tipos de terreno, em ordem decrescente, no território brasileiro

Ordens de solo	Área		
	km²	%	
Latossolos	2.691.563	31,61	
Argissolos	2.281.135	26,79	
Neossolos	1.130.776	13,28	
Plintossolos	580.715	6,82	
Cambissolos	462.358	5,43	
Gleissolos	391.684	4,60	
Luvissolos	239.268	2,81	
Planossolos	235.011	2,76	
Espodossolos	168.595	1,98	
Nitossolos	102.179	1,20	
Chernossolos	39.168	0,46	
Vertissolos	17.881	0,21	
Organossolos	2.544	0,03	
Águas	156.674	1,84	
Afloramento de Rocha (AR)	11.069	0,13	
Dunas	4.257	0,05	
TOTAIS	8.514.877	100,00	



Transição: clara, abrupta ou gradual;

Cores: Avermelhados, amarelados ou acizentados;

Textura: arenosa a argilosa (A) e média a mto argilosa (B);

Relevos mais dissecados que os Latossolos;

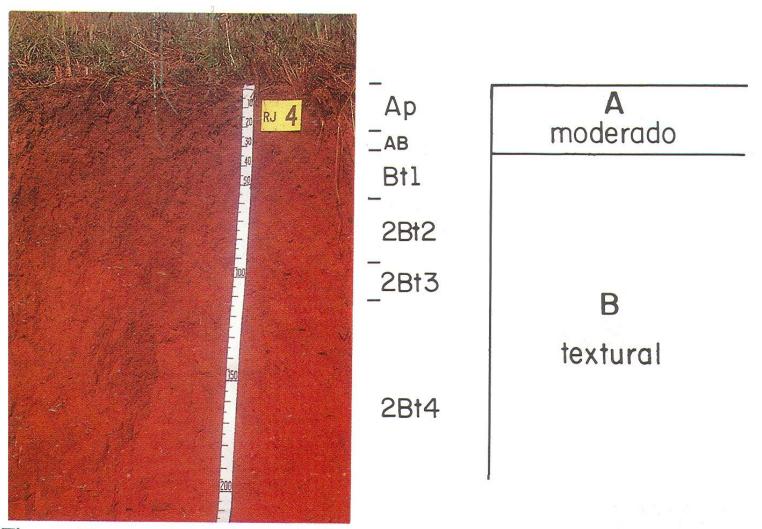


Figura 15. Podzólico Vermelho-Escuro Tb Eutrófico A moderado textura argilosa, originado de hornblenda gnaisses e anfibolitos. Mun. Cordeiro, RJ. Foto P.K.T. Jacomine.

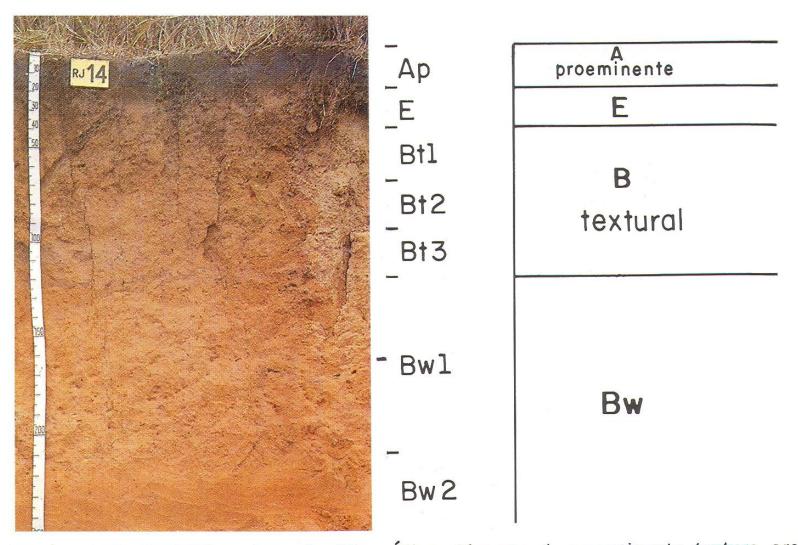


Figura 19. Podzólico Amarelo Tb Álico Abrupto A proeminente textura arenosa/argilosa, originado de sedimentos areno-argilosos. Mun. Campos, RJ. Foto M.N. Camargo.

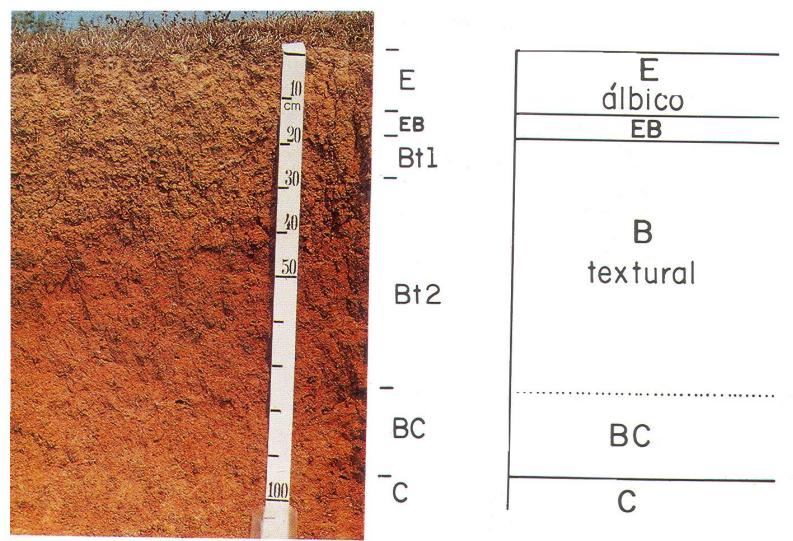
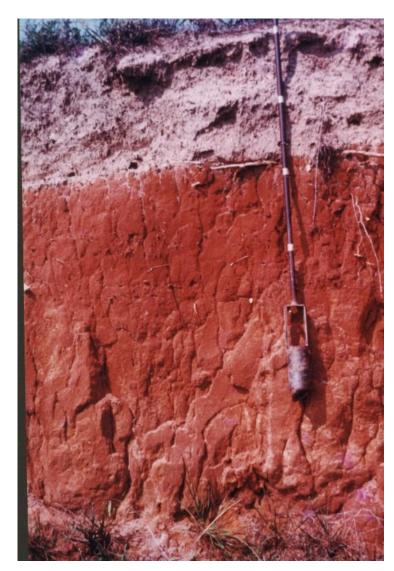



Figura 16. Podzólico Vermelho-Amarelo Tb Álico textura argilosa, originado de sedimentos pelíticos. Mun. Sena Madureira, AC. Perfil truncado por erosão do horizonte A moderado. Foto M.N. Camargo.

ARGISSOLO VERMELHO-AMARELO típico

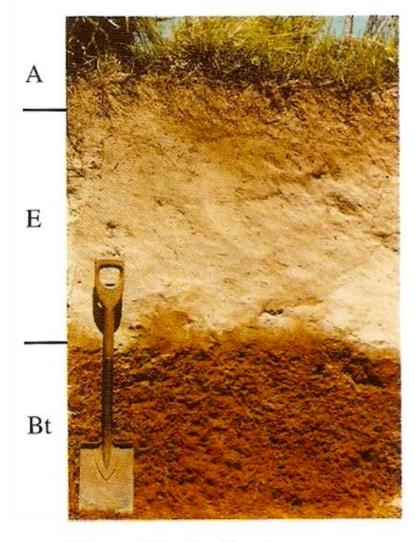


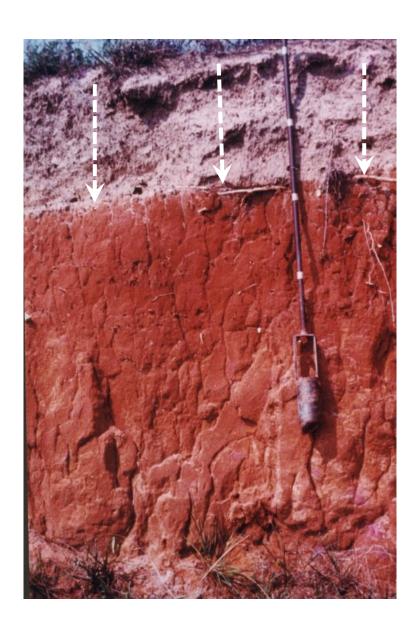
Figura 22 - Argissolo Vermelho-Amarelo distrófico arênico (Unidade Itapoã).

POROSIDADE

Quadro 3.16.2. Porosidade total, macroporosidade e microporosidade de um LATOSSOLO VERMELHO Distroférrico (LV) e de um ARGISSOLO VERMELHO-AMARELO abrúptico (PVA) (Grohmann, 1960).

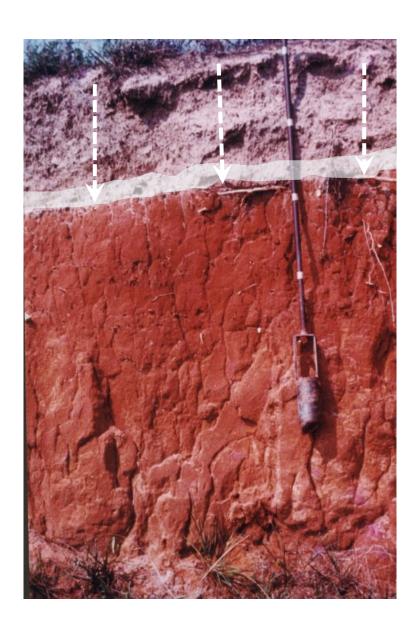
Solo	Profundidade (cm)	Argila (%)	Porosidade (%)		
	,		Total	Macroporosidade	Microporosidade
LV	0-25	46	65	25	40
	50-80	49	67	33	34
PVA	0-25	14	51	38	13
	50-80	29	48	17	31

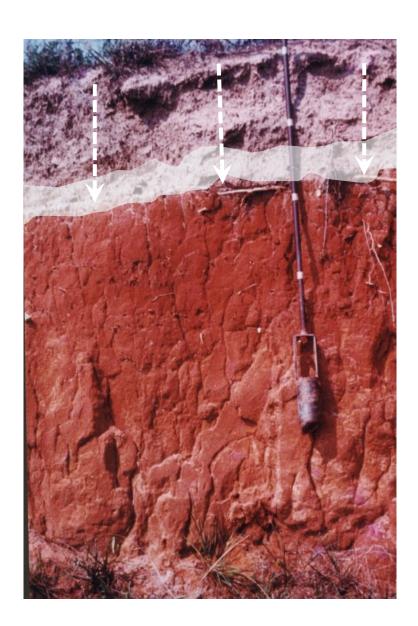
Fonte: Oliveira (2005)

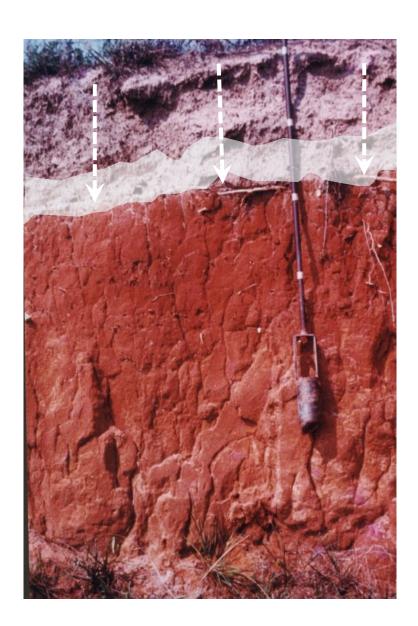

CONDUTIVIDADE HIDRÁULICA

Quadro 3.16.3. Condutividade hidráulica em Podzólicos Vermelho-Amarelos Eutróficos (PVe) e Solos Aluviais Eutróficos (Ae) em três bacias hidrográficas da Região de Marília, SP (Zimback & Carvalho, 1996).

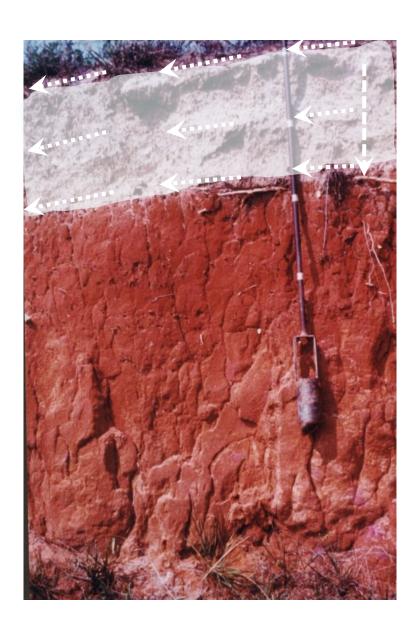
Solo	Horizonte	Condutividade hidráulica m $s^{-1} \times 10^{-5}$
PVe1-Bacia 1	Ap	3,89
	Bt2	0,56
PVe2-Bacia 1	Ap	3,02
	Bt2	0,90
PVe1-Bacia 2	Ap	3,99
	Bt2	0,39
PVe2-Bacia 2	Ap	3,14
	Bt2	0,67
PVe1-Bacia 3	Ap	3,33
	Bt2	0,34
PVe2-Bacia 3	Ap	2,88
	Bt2	0,62


Fonte: Oliveira (2005)


Implicações:


Implicações:

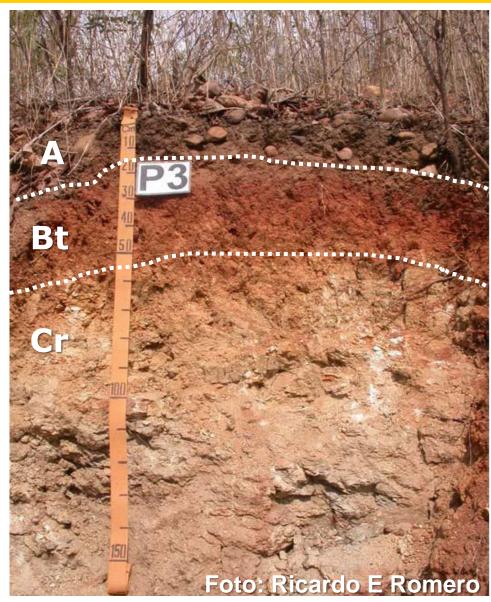

Implicações:


Implicações:

Implicações:

Implicações:

Quadro 2. Área e percentual de ocorrência das Ordens de solos¹, corpos d'água e tipos de terreno, em ordem decrescente, no território brasileiro


Ordens de solo	Área		
	km²	0/0	
Latossolos	2.691.563	31,61	
Argissolos	2.281.135	26,79	
Neossolos	1.130.776	13,28	
Plintossolos	580.715	6,82	
Cambissolos	462.358	5,43	
Gleissolos	391.684	4.60	
Luvissolos	239.268	2,81	
Planossolos	235.011	2,76	
Espodossolos	168.595	1,98	
Nitossolos	102.179	1,20	
Chernossolos	39.168	0,46	
Vertissolos	17.881	0,21	
Organossolos	2.544	0,03	
Águas	156.674	1,84	
Afloramento de Rocha (AR)	11.069	0,13	
Dunas	4.257	0,05	
TOTAIS	8.514.877	100,00	

- Elevada fertilidade natural;
- Bt, alto V% e alta CTC;
- Normalmente pouco profundos;
- Áreas expressivas na região nordeste, no semi-árido.

LUVISSOLO CRÔMICO Órtico típico (Choró, CE)

Fig.13. Perfil de LUVISSOLO CRÔMICO Órtico solódico (Cabrobó, PE).

LUVISSOLO HÁPLICO Pálico plíntico (RS)

PLANOSSOLOS

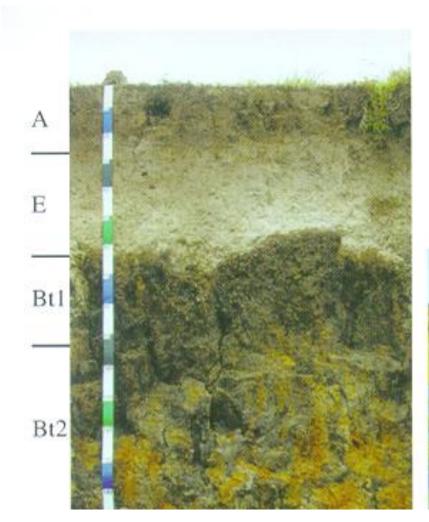
Quadro 2. Área e percentual de ocorrência das Ordens de solos¹, corpos d'água e tipos de terreno, em ordem decrescente, no território brasileiro

Ordens de solo	Área		
	km²	0/0	
Latossolos	2.691.563	31,61	
Argissolos	2.281.135	26,79	
Neossolos	1.130.776	13,28	
Plintossolos	580.715	6,82	
Cambissolos	462.358	5,43	
Gleissolos	391.684	4,60	
Luvissolos	239.268	2,81	
Planossolos	235.011	2,76	
Espodossolos	168.595	1,98	
Nitossolos	102.179	1,20	
Chernossolos	39.168	0,46	
Vertissolos	17.881	0,21	
Organossolos	2.544	0,03	
Águas	156.674	1,84	
Afloramento de Rocha (AR)	11.069	0,13	
Dunas	4.257	0,05	
TOTAIS	8.514.877	100,00	

PLANOSSOLOS

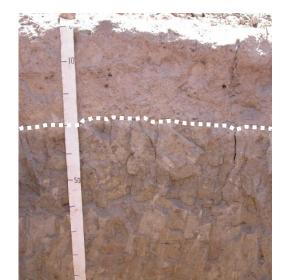
Horizonte B Plânico

• Estrutura: prismática, colunar


Cores: acinzentadas

MUDANÇA TEXTURAL ABRUPTA;

PLANOSSOLOS

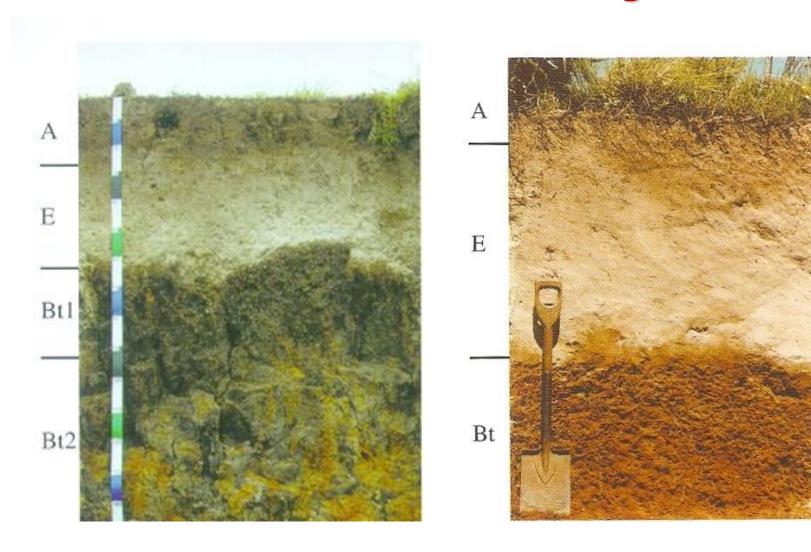

Morfologia

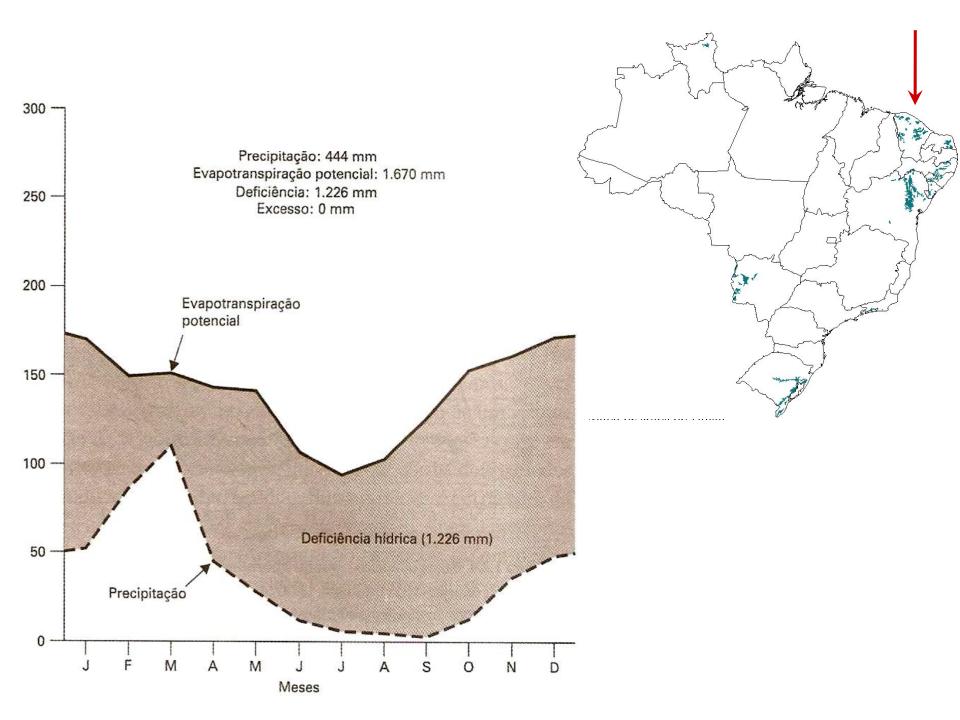


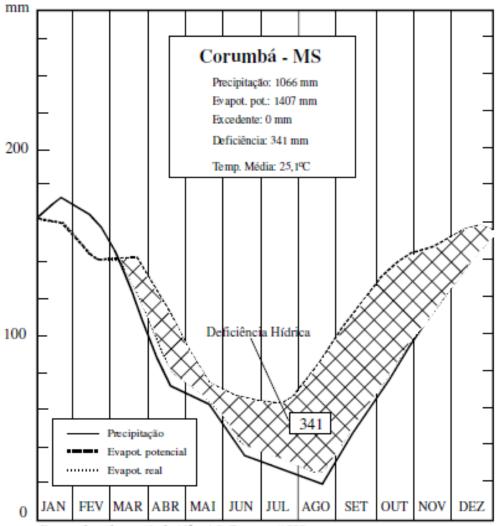


PLANOSSOLOS

AGRAVANTES

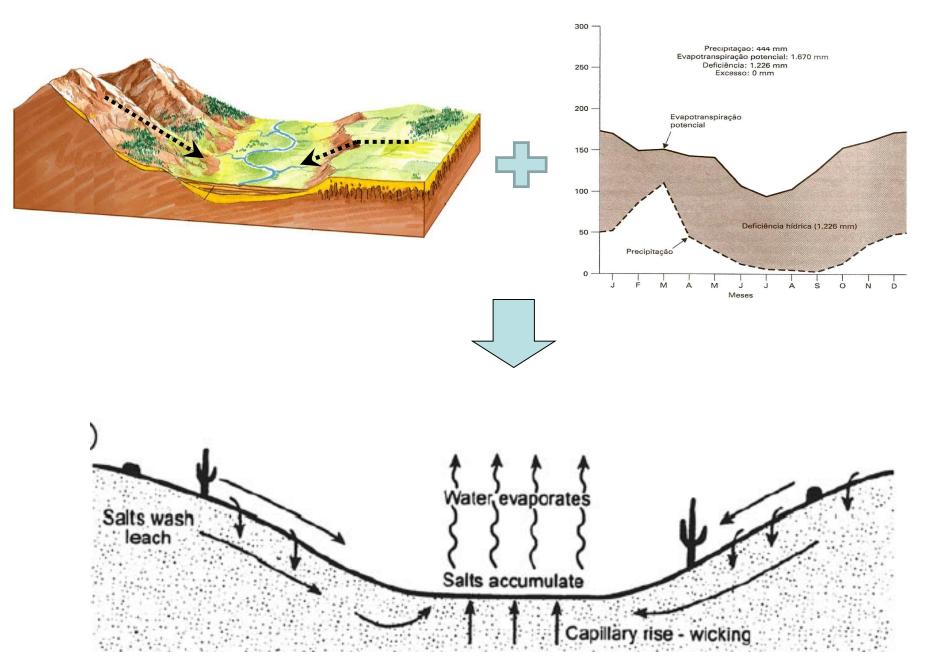



PLANOSSOLOS


Planossolo

X

Argissolos

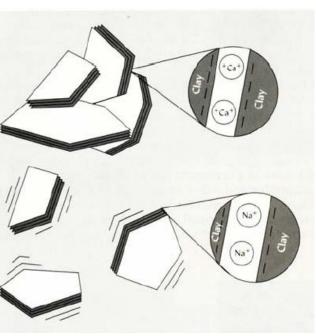


Fonte: adaptado a partir de Alfonsi & Camargo (1986)

Acúmulo de sais e Na+

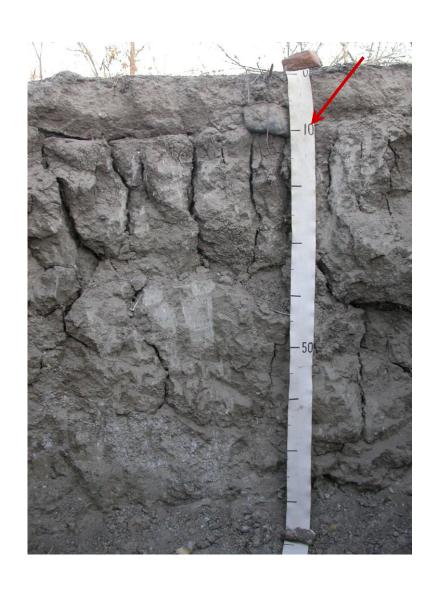
Quadro 6.5.1. Classes de corrosividade do solo para estruturas de aço não revestido segundo o Serviço de Conservação de Solos (SCS) americano (citado por Olson, 1973, e Kendrew, 1978).

	nde elétrica do uração (dS m ⁻¹)	Classificação da corrosividad			
SCS	Kendrew	Arsontos e cataos (Agreta			
>1	> 2	Muito alta			
0,4-1,0	1,0-2,0	Alta			
0,2-0,4 0,2-1,0		Moderada			
0,1	-0,2	Baixa			
<	0,1	Muito baixa			

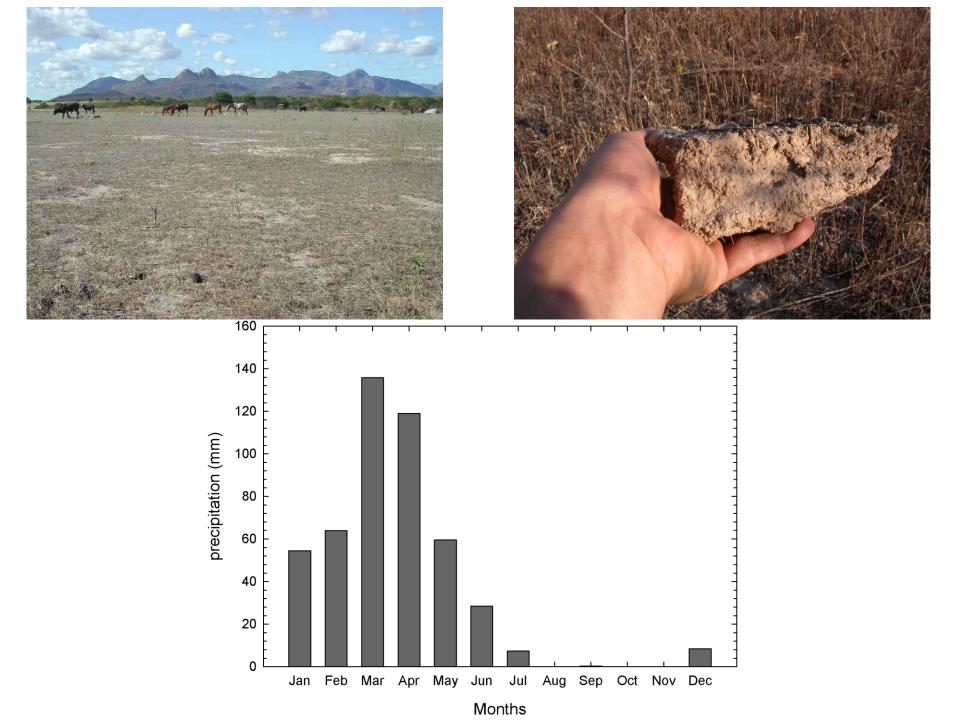


PLANOSSOLOS

DISPERSÃO



Horizonte		Amostra seca ao ar (%)			p	рН		. Pasta saturada		Sat. c/	
Símbolo	Profund.	Calhaus (>20 mm)	Cascalho	TF (<2mm)	Água (1:2,5)	KCIN (1:2,5)	Equiv. de Umidade	C. E. do extrato (mmhos/ cm 25° C)	Ágya (%)	sódio 100 Na ⁺ T	
A_{11}	0-6	0	3	97	6,0	5,2	8			2	
A_{12}	6-30	0	4	96	5,9	4,5	5			8	
A_2	30-50	2	8	90	6,4	4,8	4	4. T. 		11	
$\mathrm{IIB}_{21\mathrm{t}}$	50-60	1	9	90	7,0	4,9	13	1,8	38	14	
${ m IIB}_{22t}$	60-82	0	2	98	7,7	6,1	22	3,9	46	23	
IIB_{3t}	82-100	+ 0	3	97	8,1	6,6	18	4,2	45	22	
SiO ₂	Ato	(%		,47	P ₂ O ₅	Ki	Kr	Al ₂ O ₃ Fe ₂ O ₃	P assimil. (ppm)	Equiv. de CaCO	
2,4),11	0,02	2,55	2,05	4,00	9		
2,4				0,12	0,02	2,40	2,08	6,68	1		
2,1				0,09	0,01	2,38	2,11	7,74	1		
10,5),21	0,01	2,62	2,26	2,29	1	0	
18,3	11,),32	0,01	2,78	2,38	6,07	3	0	
15,6	9,			,29	0,01	2,82	2,33	4,61	3	0	
		Angerical Control of the Control of	Complex	o sortivo	(mE/100 g)				100.Al+++	
Ca++	Mg	}+	(+	Na+	S (Soma)	Δ(+++	н+	T(Soma)	Sat. de bases (%)	Al++++s	
3,0	1,	,5 0,	,34 (),11	5,0	0	2,2	7,2	69	/ 0	
0,9	0			0,18	1,3	0	1,1	2,4	54	0	
	0,8			0,19	1,1	0	0,6	1,7	65	0	
0,7				0,36	2,5	0	0	2,5	100	0	
2,1				2,45	10,6	0	0	10,6	100	0	
1,8				,87	8,4	0	0	8,4	100	0	



PLANOSSOLOS

NEOSSOLOS: Ocorrência

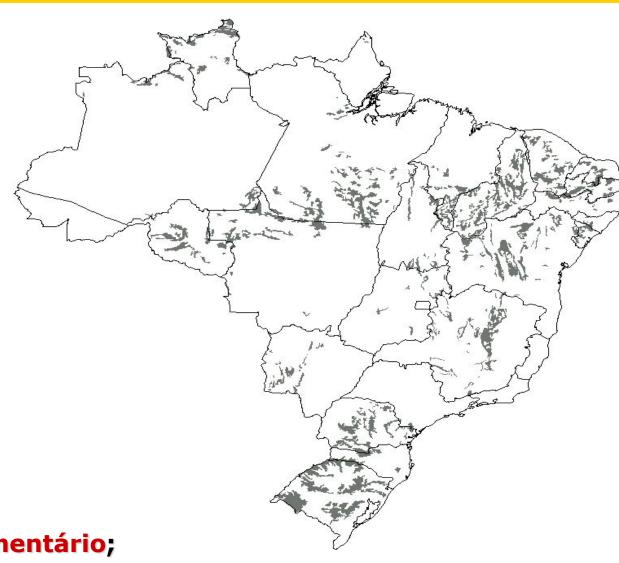
Quadro 2. Área e percentual de ocorrência das Ordens de solos¹, corpos d'água e tipos de terreno, em ordem decrescente, no território brasileiro

Ordens de solo	Área				
	km²	0/0			
Latossolos	2.691.563	31,61			
Argissolos	2.281.135	26,79			
Neossolos	1.130.776	13,28			
Plintossolos	580.715	6,82			
Cambissolos	462.358	5,43			
Gleissolos	391.684	4,60			
Luvissolos	239.268	2,81			
Planossolos	235.011	2,76			
Espodossolos	168.595	1,98			
Nitossolos	102.179	1,20			
Chernossolos	39.168	0,46			
Vertissolos	17.881	0,21			
Organossolos	2.544	0,03			
Águas	156.674	1,84			
Afloramento de Rocha (AR)	11.069	0,13			
Dunas	4.257	0,05			
TOTAIS	8.514.877	100,00			

NEOSSOLOS: Conceitos e Definições

- Solos jovens, pouco evoluídos; pouca ação da pedogênese;
- Ausência de horizonte diagnóstico de subsuperfície;
- Horizonte B <u>AUSENTE</u> ou com desenvolvimento <u>INSUFICIENTE</u>;
- A-R, A-C-R, A-Cr-R, A-Cr, A-C, O-R;
- Admite diversos tipos de horizontes superficiais;

NEOSSOLOS

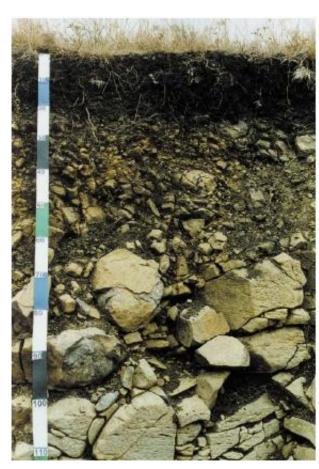

1) NEOSSOLOS LITÓLICOS

2) NEOSSOLOS FLÚVICOS

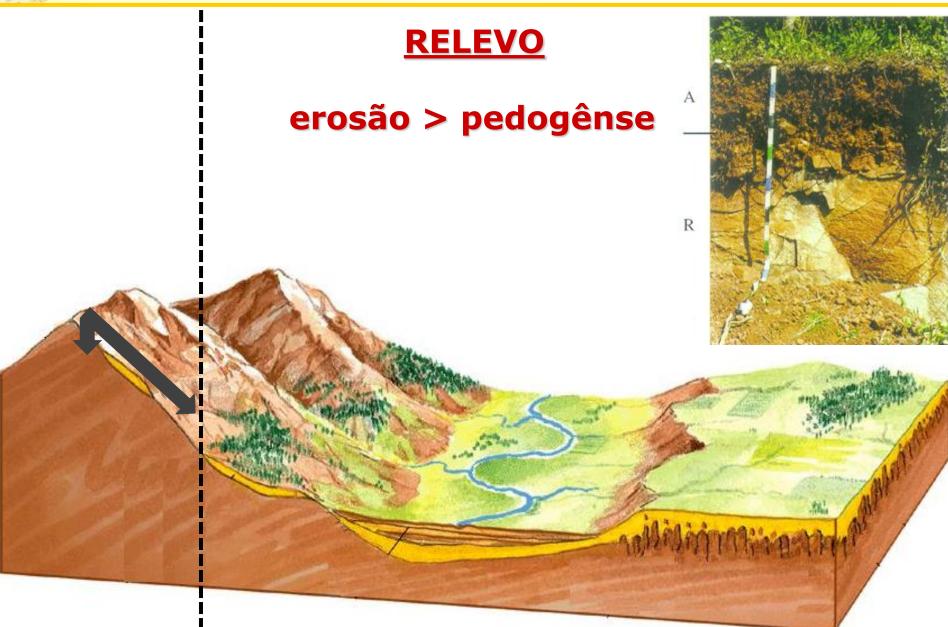
3) NEOSSOLOS REGOLÍTICOS

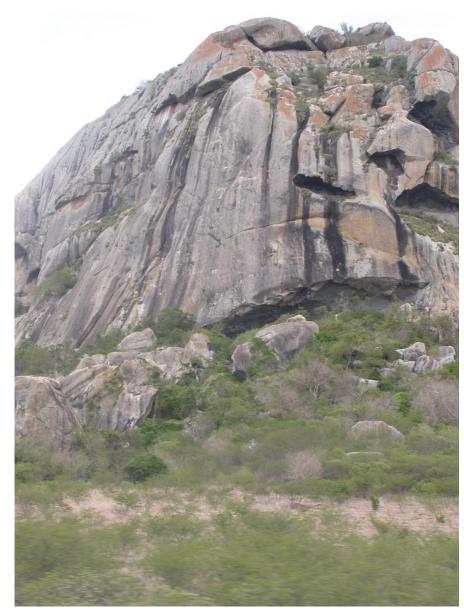
4) NEOSSOLOS QUARTZARÊNICOS

- Solos rasos < 50cm;
- Contato lítico ou fragmentário;



Neossolo Litólico Distrófico típico





Neossolo Litólico eutrófico fragmetário

Número de campo - 59 CE.

Data - 06/02/68.

Classificação — SOLO LITÓLICO EUTRÓFICO A moderado textura argilosa fase rochosa caatinga hiperxerófila relevo plano substrato calcário.

Localização — Estrada Mossoró-Tabuleiro do Norte, derivação para Lage do Meio a 13,0km do lugar chamado "Km 60". Município de Limoeiro do Norte.

Situação e declividade — Trincheira sob vegetação nativa no topo da chapada do Apodi, em área com aproximadamente 1% de declividade.

Formação geológica e litologia — Cretáceo Superior. Formação Jandaíra. Calcário.

Material originário - Calcário lajedo.

Relevo local — Plano.

Relevo regional — Plano.

Altitude — 135 metros.

Drenagem — Moderadamente drenado.

Pedregosidade — Ocorrência de calhaus e matacões angulosos.

Erosão — Laminar ligeira.

Vegetação local — Caatinga hiperxerófila arbóreo-arbustiva rala com: imburana, macambira, matapasto, mufumbo, catingueira, jurema, mororó e pereiro.

Vegetação regional — Caatinga hiperxerófila e culturas.

Uso atual — Feijão, milho e algodão arbóreo.

A₁₁ 0 — 4cm; bruno amarelado escuro (10YR 4/4, úmido e úmido amassado), bruno amarelado escuro (1Y 4/4, seco), bruno oliváceo claro (2,5Y 5/4, seco pulverizado); argila; moderada pequena granular e moderada muito pequena blocos subangulares; poros comuns muito pequenos a médios; duro, friável, muito plástico e muito pegajoso; transição plana e abrupta.

A₁₂ 4—15cm; bruno amarelado escuro (10YR 4/4, úmido e úmido amassado), bruno amarelado (10YR 5/4, seco), bruno amarelado (1Y 5/4, seco pulverizado); argila com cascalho; fraca muito pequena blocos subangulares; poros comuns muito pequenos e pequenos; duro, friável, muito plástico e muito pegajoso; transição plana e abrupta.

R 15 — 30cm+; rocha calcária consolidada.

Raízes — Comuns e horizontais no A_{11} e A_{12} .

Número de campo — 166 CE.

Data - 28/03/71.

Classificação — SOLO LITÓLICO EUTRÓFICO A moderado textura média muito cascalhenta fase pedregosa e rochosa caatinga hiperxerófila relevo forte ondulado substrato xisto.

Localização — Margem direita da estrada Antonina do Norte-Jucás, distando 46,7km da primeira. Município de Saboeiro.

Situação e declividade — Corte em terço médio de elevação com aproximadamente 30-40% de declividade.

Formação geológica e litologia — Pré-Cambriano A. Muscovita-xisto.

Material originário - Saprolito da muscovita-xisto com veeiros de quartzito.

Relevo local — Forte ondulado.

Relevo regional — Ondulado e forte ondulado.

Altitude - 350 metros.

Drenagem — Acentuadamente drenado.

Pedregosidade — Grande quantidade de cascalhos e matacões de xisto e quartzito angulosos.

Erosão — Laminar moderada. Na área ocorre erosão laminar severa.

Vegetação local — Caatinga hiperxerófila com predomínio de: marmeleiro e catingueira.

Vegetação regional - Caatinga hiperxerófila.

Uso atual — Criação extensiva de caprinos na caatinga.

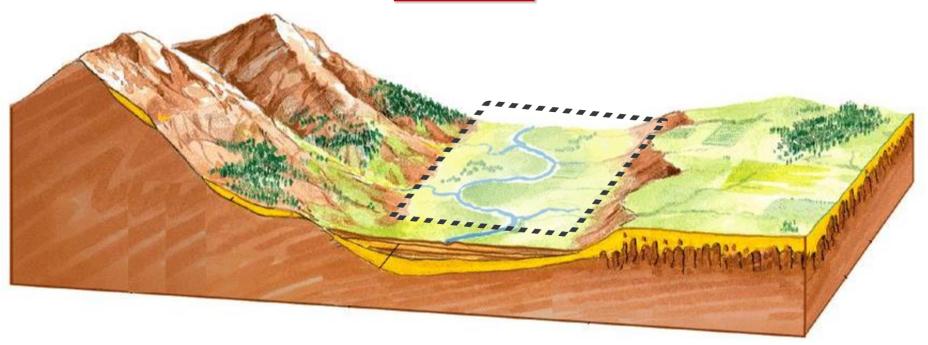
- A₁ 0—25cm; bruno escuro (7,5YR 4/3, úmido), bruno (10YR 5/3, seco); franco muito cascalhento; moderada pequena blocos subangulares; muitos poros pequenos e médios e poucos grandes; ligeiramente duro, friável, ligeiramente plástico e ligeiramente pegajoso; transição plana e clara.
- C 25 40cm; fragmentos de rocha em decomposição; franco-siltosa cascalhenta; muitos poros pequenos e médios; transição ondulada e abrupta.

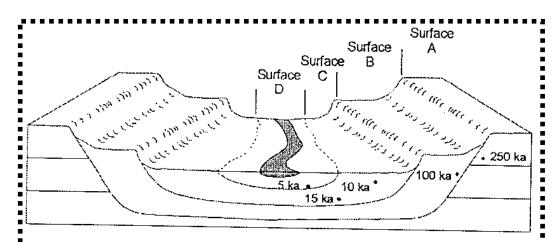
R 40 — 80cm+;

Raízes — Muitas no A₁ e poucas no C.

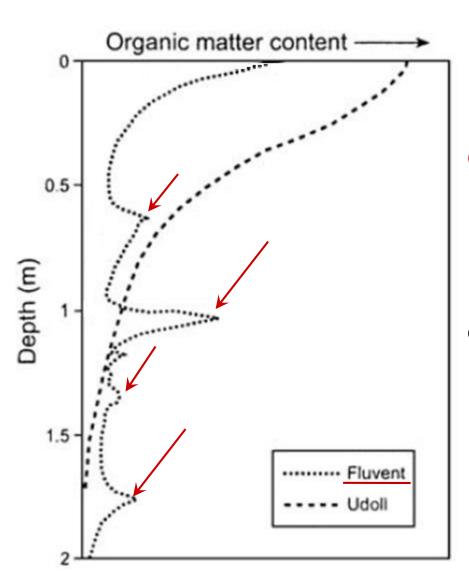
Derivados de sedimentos aluviais;

Presença de caráter flúvico;


Diversidade maior do que os outros NEOSSOLOS;


Associados a relevos aplainados e a depressões;

 Ocorrência relacionada às margens de rios, podendo ocorrer em qualquer região do país;



RELEVO

Distribuição irregular (errática)
 C-org em profundidade, e/ou

Camadas estratificadas em 25%ou mais do volume do solo.

Hori	zont e	Amostro se		10 ar		рН		Pasta saturada		Sat. c/
Símbolo	Profund.	Calhaus (>20 mm)	Cascalho	TF (<2mm)	Água (1:2,5)	KC(N (1-2,5)	Equiv. de Umidade	C. E. do extrato (mmhos/ cm 25° C	Água (%)	sódio 100 Na [†] T
Ар	0-12	0	4	96	5,3	4,6	17			<1
IIC_1	12-21	0	3	97	5,6	5,1	22	3,9	54	3
IIIC_2	21-50	0	6	94	5,9	5,0	7			1
$IIIC_3$	50-90	0	9	91	5,5	4,8	3		<u> </u>	3
IVC_4	90-114	0	0	100	5,5	4,9	10	_		6
IVC ₅	114-135	0	1	99	6,4	5,3	4	—	-	4
VC_6	135-171	0	0	100	6,8	5,3	19	_		7
VC ₇	171-190	+ 0	0	100	6,4	5,7	19	5,9	44	4
С				Composição Granulométrica (%)			(%)			
(%)	N (%)	6	. 9	Areia rossa	Areio fina	Silte (0,05 -	Argila	Argila Natutol	Grau de Floculação	% Silte
			(2-	0,20 (mm)	0,20-0,05 mm)	-0,002 mm)	(ww)	(%)	(%)	% Argila

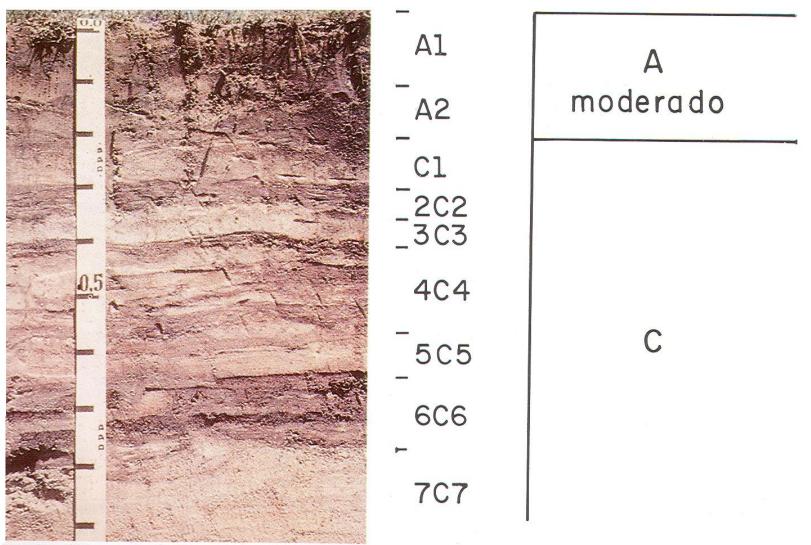


Figura 57. Solo Aluvial Ta Eutrófico A moderado textura média (errática), formando-se em sedimentos aluvionais argilo-arenosos. Mun. São Cristovão, SE. Foto P.K.T. Jacomine.

Implicações:

Trafegabilidade

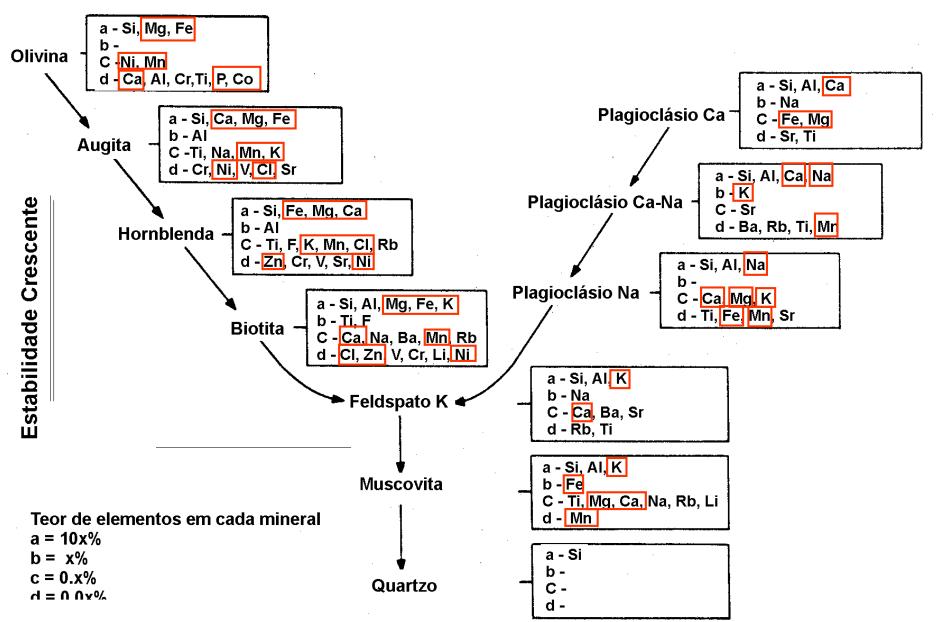
Erodibilidade

Drenagem

Salinidade

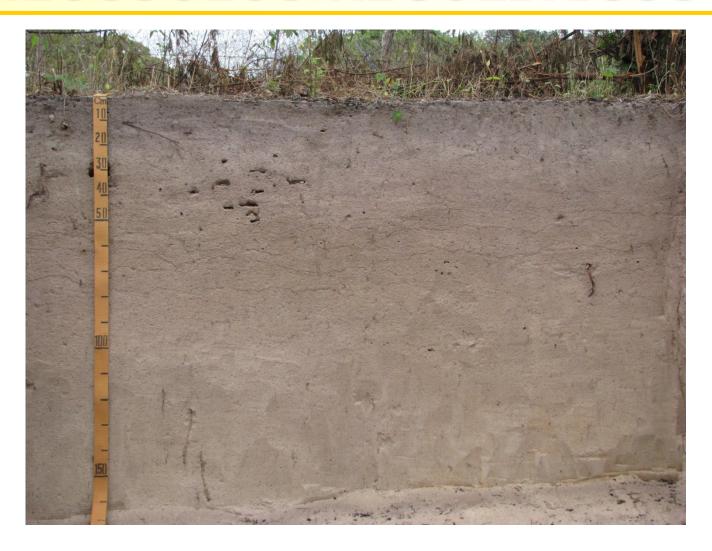

Hori	zonte	Amostro se				рН		Pasta saturada		Sat. c/
Símbolo -	Profund. (cm.)	Calhaus (>20mm)	Cascalho	TF (<2mm)	Água) (1:2,5)	KC(N (1-2,5)	Equiv. de Umidade	C. E. do extrato (mmhos/ cm 25° C	Água (%)	sódio 100 Na [†] T
Ap IIC,	0-12 12-21	0 0	4 3	96 97	5,3 5,6	4,6 5.1	17	2.0		<1
IIIC_2	21-50	0	6	94	5,0 5,9	5,1 5,0	22 7	3,9	54	3
$IIIC_3$	50-90	0	9	91	5,5	4,8	3			3
$rac{ ext{IVC}_4}{ ext{IVC}_5}$	90-114 114-135	0 0	0 1	100 99	- , -	4,9 5,3	10 4			6 4
VC_6	135-171	0	0	100	6,8	5,3	19			7
VC ₇	171-190	+ 0	0	100	6,4	5,7	19	5,9	44	4
С	N			Composição Granulométrica (%			(%)			
(%)	(%)	1 6	. 9	Areia rossa	Areia fina	Silte (0,05-	Argila	Argila Natutol	Grau de Floculação	% Silte
	<u></u>		(2-	O,20 (0,20-0,05 mm)	-0,002 mm)	(ww) SOO,O>)	(%)	(%)	% Argila

NEOSSOLOS REGOLÍTICOS




- Espessura > 50 cm;
- PRESENÇA de minerais alteráveis (4% ou mais);
- Fragmentos de rocha em C ou Cr;
- Textura geralmente arenosa;
- Áreas de relevo plano a suave ondulado;

NEOSSOLOS REGOLÍTICOS



NEOSSOLO REGOLÍTICO Eutrófico típico

NEOSSOLOS REGOLÍTICOS

Perfil 2. NEOSSOLO REGOLÍTICO Distrófico <u>espessarênico</u>, textura muito arenosa, A Fraco , hiperdistrófico, fase caatinga hipoxerófila, relevo suave ondulado. XXXIICBCS 2009 (Fortaleza).

NEOSSOLOS QUARTZARÊNICOS

- Espessura > 50 cm;
- AUSÊNCIA de minerais alteráveis;
- Seqüência A-C;
- Areia composta de quartzo;
- Textura areia ou areia franca até 150cm de profundidade;

NEOSSOLOS QUARTZARÊNICOS

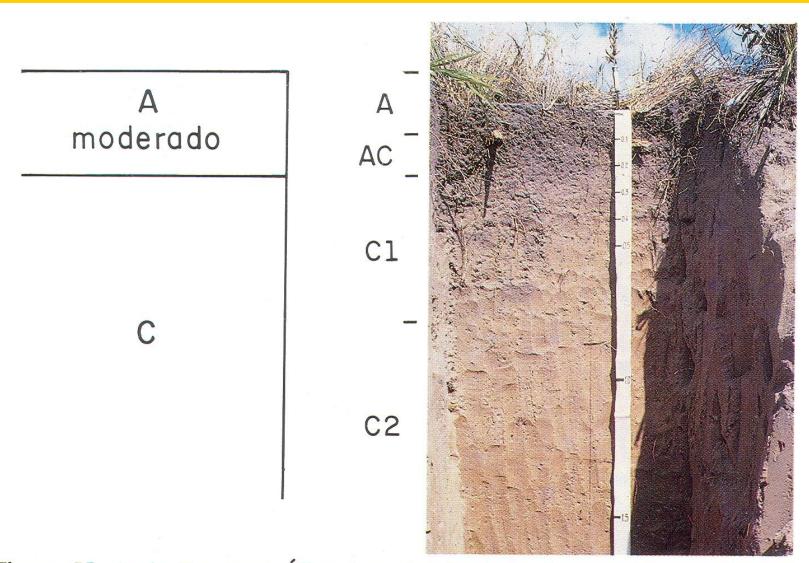


Figura 55. Areia Quartzosa Álica A moderado, formada em cobertura psamítica ocorrente na Chapada dos Coroados. Mun. Jaciara, MT. Foto M.N. Camargo.

NEOSSOLOS QUARTZARÊNICOS

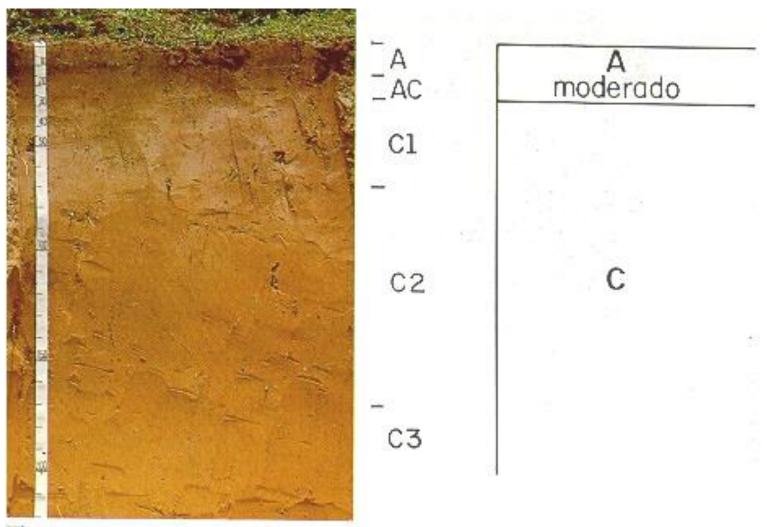


Figura 56. Areia Quartzosa Distrófica A moderado, formada em cobertura pedimentar psamítica. Mun. São João do Piauí, Pl. Foto M.N. Camargo.

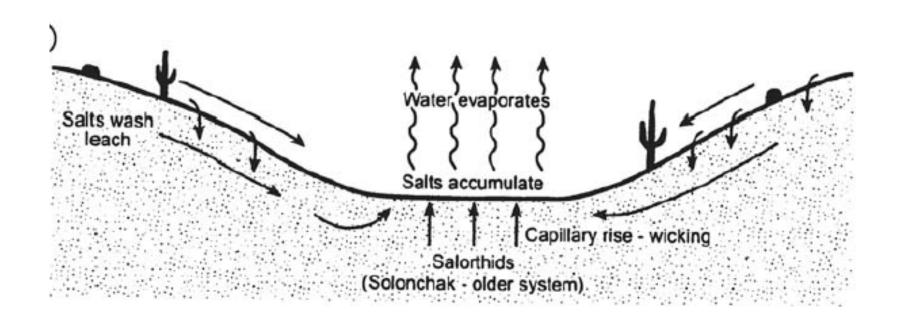
Quadro 6.4.1. Limitações para lagoa de decantação e solos mais comuns na limitação severa.

Propriedade	Limitação			Observações gerais	
	Ligeira	Moderada	Severa		
Inundação	inexistente a ocasional	freqüente	comum	Pode ultrapassar diques das lagoas, causando espalhamento do mate- rial retido. Planícies aluviais.	
Profundidade até rocha ou lençol freático (cm)	> 150	150-100	< 100	Diminuição do volume do material contido. Contaminação do lençol freático. Neossolos Litólicos, Neossolos Regolíticos lépticos. Chernossolos Rêndzicos, grandes grupos de solos lépticos. Gleissolos.	
Declividade (%)) < 2	2-7	>7	Aumenta custo de escavação.	
Permeabilidade (cm h ⁻¹) do assoalho da lago		1,5-5,0	> 5,0	Contaminação do lençol freático. Neossolos Quartzarênicos, Neossolos Regolíticos psamíticos.	
Pedregosidade (> 25 cm) (% por volume)	< 20	20-50	> 50	Dificuldade de escavação e aplai- namento do assoalho.	

GLEISSOLOS

- Solos hidromórficos;
- Horizonte glei dentro de 150cm;
- Lençol freático elevado na maior parte do ano;
- Cores acizentadas, azuladas ou esverdeadas;
- Solos mal ou muito mal drenados;

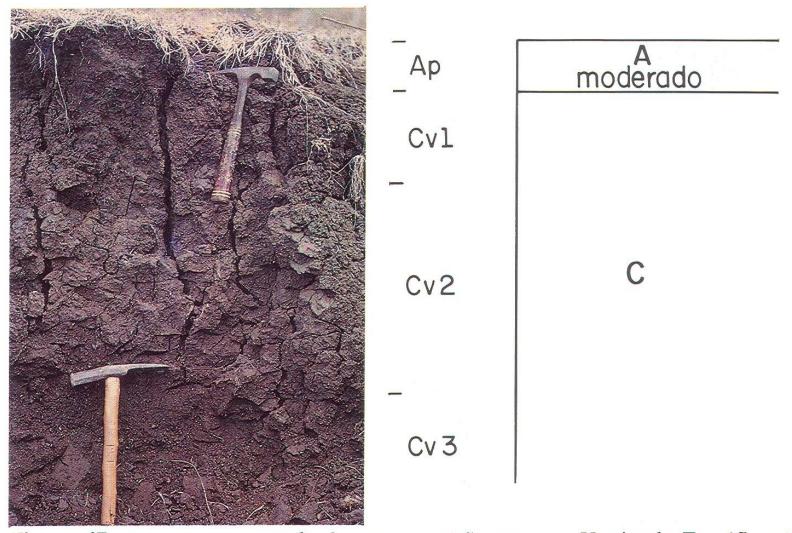
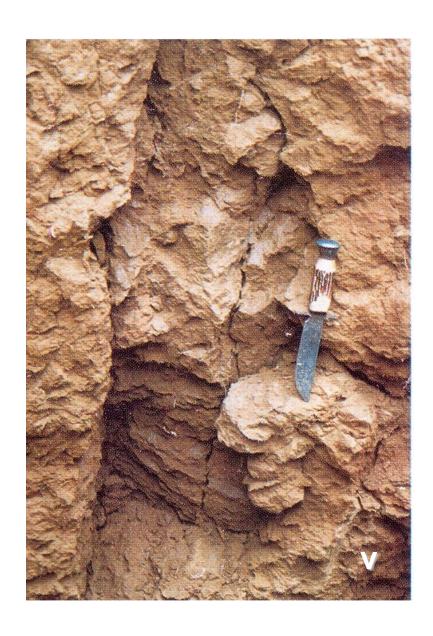
GLEISSOLOS

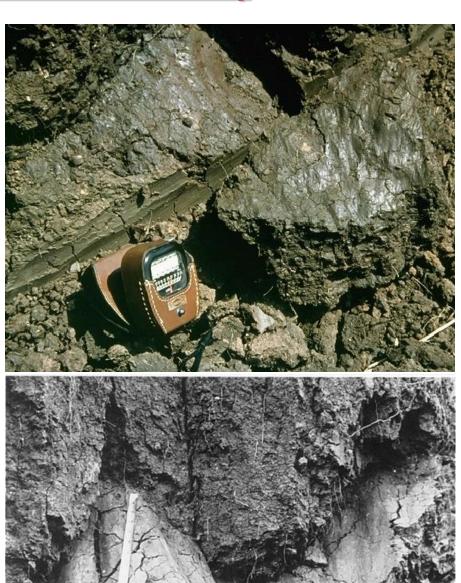


GLEISSOLOS

SALINIZAÇÃO

- Horizonte diagnóstico: vértico;
- Atividade de argila: alta (Ta);
- Saturação por bases: > 50%;
- Textura: > 300 g/kg de argila;
- Fendas profundas na seca e slickensides;

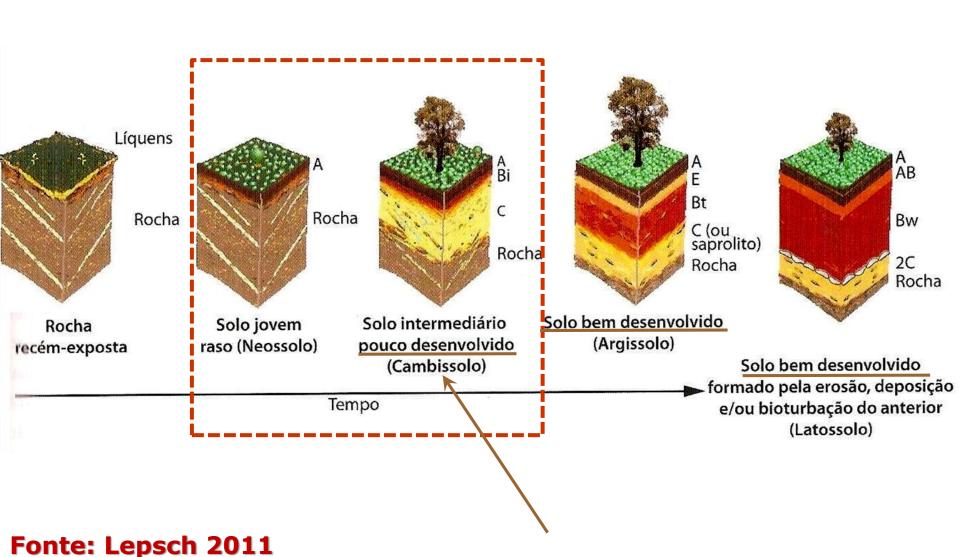




Figura 47. Aspecto apresentado durante a estação seca por Vertissolo Eutrófico A moderado textura muito argilosa, originado de rochas efusivas básicas. São por definição solos Ta e quase invariavelmente eutróficos. Mun. Porto Franco, MA. Foto M.N. Camargo.

SUPERFÍCIES DE FRICÇÃO ("SLICKENSIDES")

Implicações:

Trafegabilidade
Raízes
Faixa de umidade
Condutividade hidráulica


Quadro 5.20.3. Taxa de infiltração em Vertissolo e Alfissolo (Krantz et al., 1978).

Tempo (horas)	Infiltração (mm h ⁻¹)		
	Vertissolo	Alfissolo	
0,5	76	73	
0,5-1,0	34	18	
1-2	4	15	
144	$0,21 \pm 0,1$	$7,7 \pm 3,7$	

Fonte: Oliveira (2005)

CAMBISSOLOS: Conceitos e Definições

CAMBISSOLOS: Ocorrência

Quadro 2. Área e percentual de ocorrência das Ordens de solos¹, corpos d'água e tipos de terreno, em ordem decrescente, no território brasileiro

Ordens de solo	Área		
	km²	%	
Latossolos	2.691.563	31,61	
Argissolos	2.281.135	26,79	
Neossolos	1.130.776	13,28	
Plintossolos	580.715	6,82	
Cambissolos	462.358	5,43	
Gleissolos	391.684	4,60	
Luvissolos	239.268	2,81	
Planossolos	235.011	2,76	
Espodossolos	168.595	1,98	
Nitossolos	102.179	1,20	
Chernossolos	39.168	0,46	
Vertissolos	17.881	0,21	
Organossolos	2.544	0,03	
Águas	156.674	1,84	
Afloramento de Rocha (AR)	11.069	0,13	
Dunas	4.257	0,05	
TOTAIS	8.514.877	100,00	

CAMBISSOLOS: Conceitos e Definições

CAMBISSOLOS: Conceitos e Definições

CAMBISSOLOS: morfologia e processos

Cambissolo Hístico Alumínico típico

(Serra da Rocinha, RS)

Cambissolo Húmico Distrófico saprolítico

(Água Doce, SC)

CAMBISSOLOS: morfologia e processos

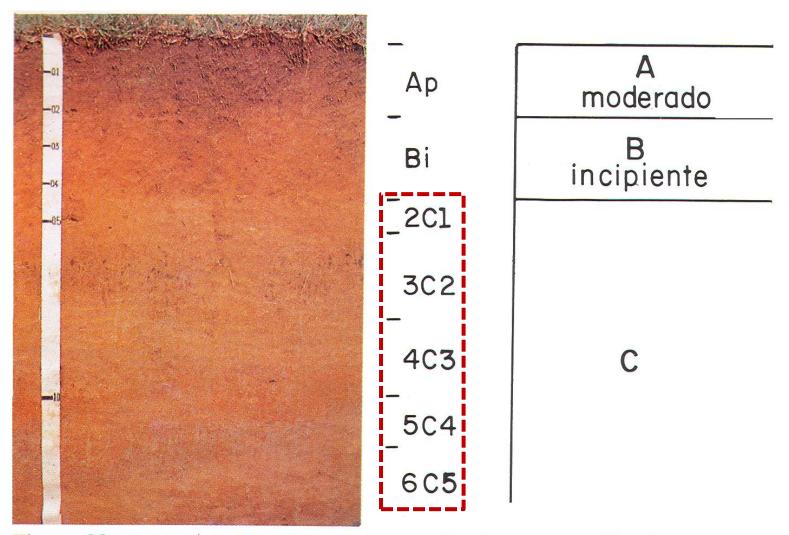


Figura 38. Cambissolo Tb Distrófico A moderado textura média, formado em sedimentos aluvionais argilo-arenosos a arenosos. Mun. Campo do Meio, MG. Foto M.N. Camargo.

CAMBISSOLOS: morfologia e processos

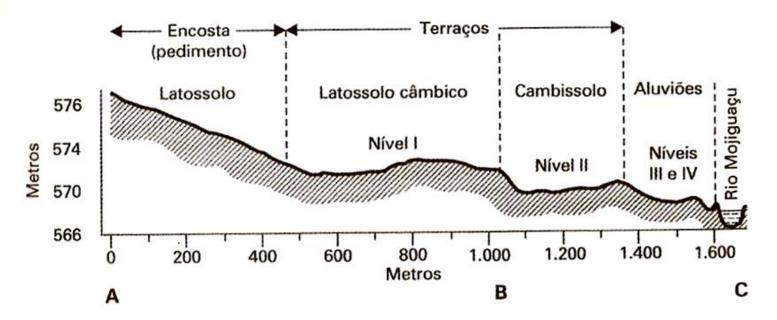


Figura 3.18.2. Perfis topográficos associados aos solos de várzea no Município de Conchal, SP (Adaptado de Perez Filho et al., 1980).

Plintita com ou sem petroplintita;

Cores pálidas com ou sem mosqueados;

• Condições de restrição de percolação de água;

• Relevos planos a suave ondulados, várzeas e depressões;

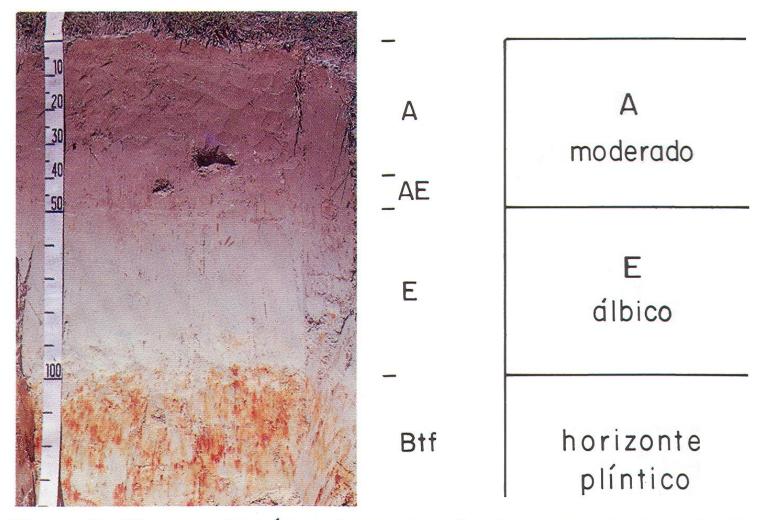
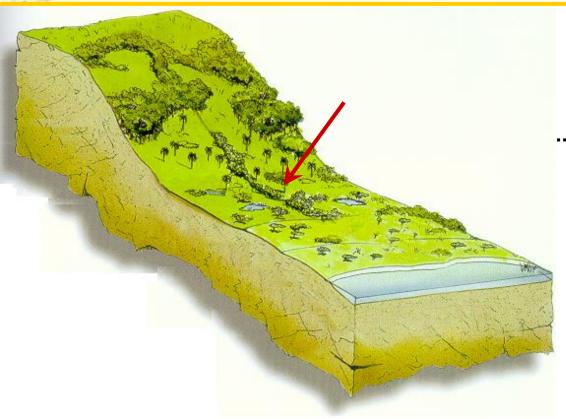
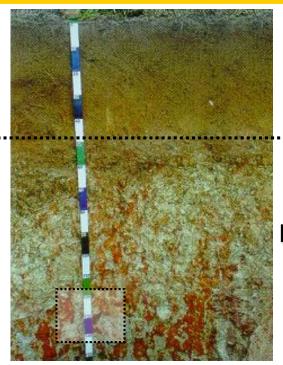
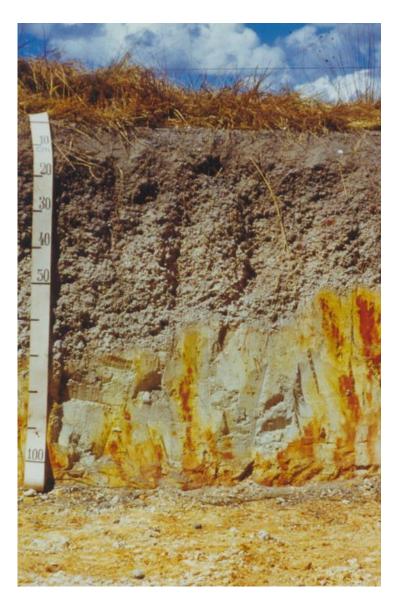




Figura 42. Plintossolo Tb Álico Abrupto A moderado textura arenosa/média, formado em deposição predominantemente arenosa. Mun. Barras, PI. Foto M.N. Camargo.


Btf

SEGREGAÇÃO DE FERRO:

- (1) mobilização,
- (2) transporte e
- (3) concentração de compostos de ferro

Quadro 3.17.2. Densidade aparente da plintita e de corpos não-plínticos em solos plínticos e não-plínticos (Perkins & Kaihulla, 1981).

Classificação	Solos plínticos	Classificação	Solos não-plínticos	
ments.	— kg/dm³ —		— kg/dm³ —	
Plinthic Paleudult Arenic Plinthic Paleudult Arenic Plinthic Paleaqult Plinthic Paleudult	1,98 2,06 1,88 1,92	Typic Paleudult Arenic Paleudult Arenic Paleaqult Typic Paleudult	1,54 1,46 1,40 1,44	

Fonte: Oliveira (2005)

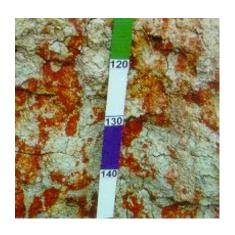
Implicações:

Profundidade Quantidade

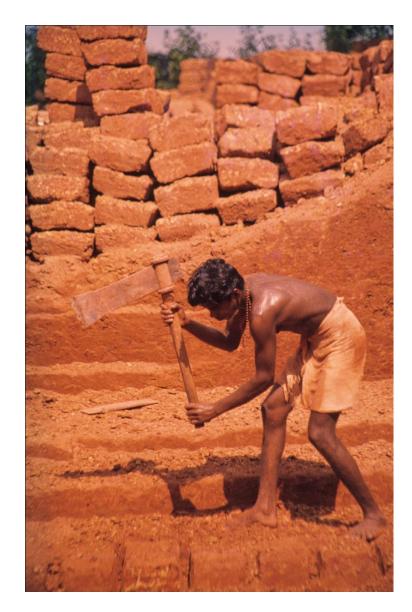
Espessura

Erosão

Permeabilidade

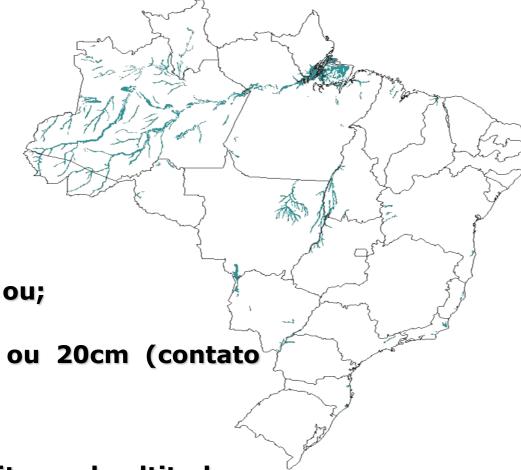

Raízes

FLUTUAÇÃO DO LENÇOL FREÁTICO


EVOLUÇÃO A PETROPLINTITA

HORIZONTE CONCRECIONÁRIO

HORIZONTE LITOPLÍNTICO



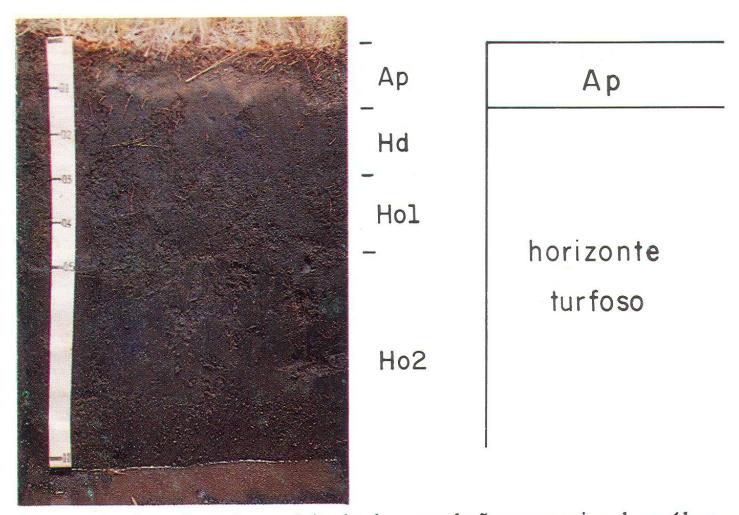
ORGANOSSOLOS

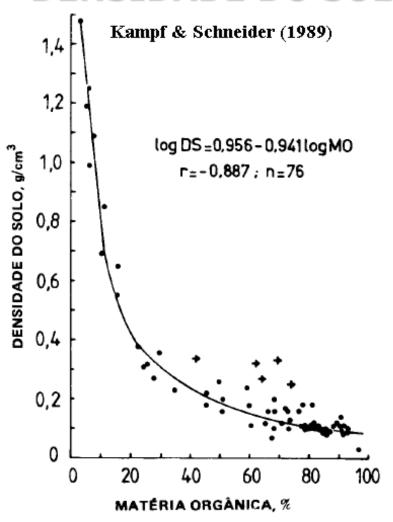
- 1) Horizonte H hístico ≥ 40cm ou;
- 2) Horizonte O histico ≥ 40 ou 20cm (contato

lítico);

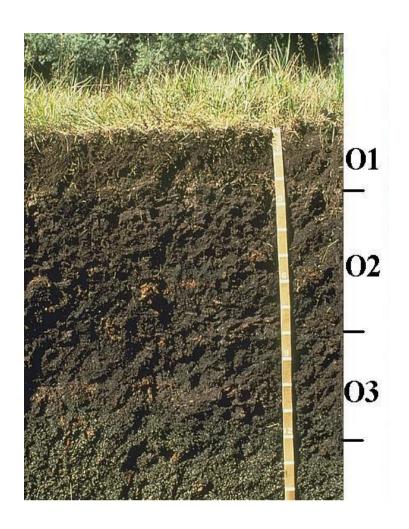
• Ambiente de drenagem restrita ou de altitude;

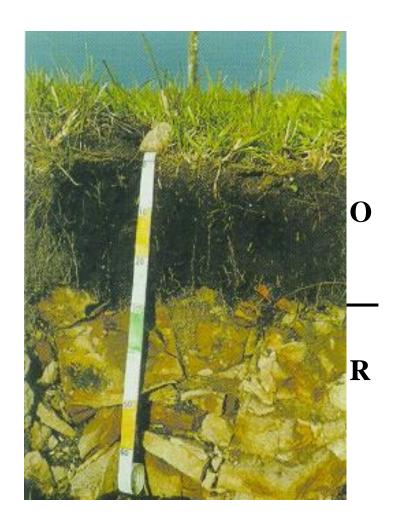
ORGANOSSOLOS



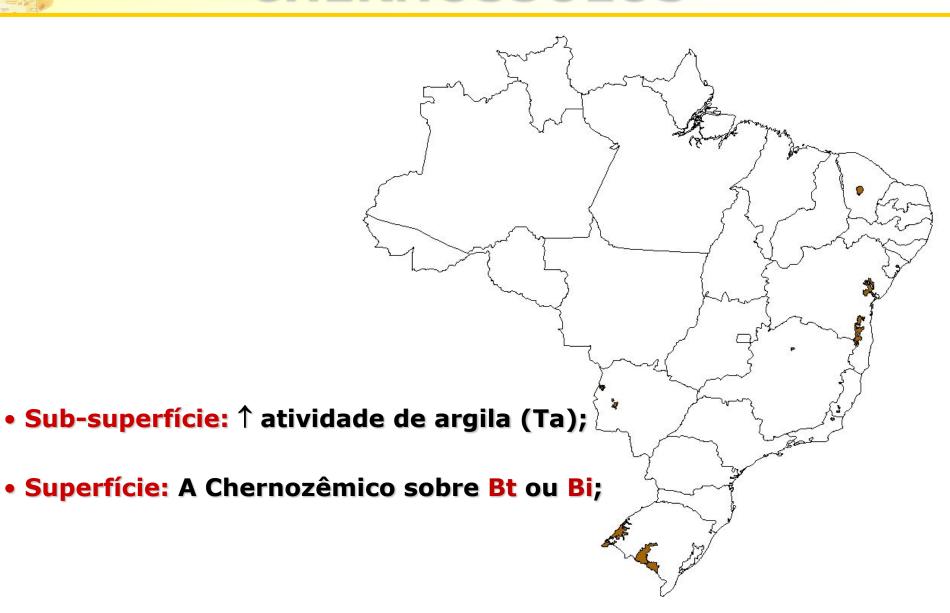

Figura 58. Solo Orgânico, originado de acumulação progressiva de resíduos vegetais em ambiente palustre. O delgado horizonte Ap advém de ulterior sedimentação fluvial de material argilo-arenoso. Mun. Boa Esperança, MG. Foto M.N. Camargo.

DENSIDADE DO SOLO


igura 1. Relação entre o conteúdo de matéria orgânica e a densidade global do solo nos horizontes (+ amostras de horizontes H superficiais drenados).



CAPACIDADE DE TROCA DE CÁTIONS


Componente	Tipo de Mineral	Superfície Específica	СТС
		m²/g	cmolc/kg
Caulinita	1:1	10-20	1-10
Montmorilonita	2:1	600-800	80-120
Vermiculita	2:1	600-800	120-150
Mica	2:1	70-120	20-40
Matéria Orgânica	-	800-900	100-300

Quadro 2. Área e percentual de ocorrência das Ordens de solos¹, corpos d'água e tipos de terreno, em ordem decrescente, no território brasileiro

Ordens de solo	Área		
	km²	%	
Latossolos	2.691.563	31,61	
Argissolos	2.281.135	26,79	
Neossolos	1.130.776	13,28	
Plintossolos	580.715	6,82	
Cambissolos	462.358	5,43	
Gleissolos	391.684	4,60	
Luvissolos	239.268	2,81	
Planossolos	235.011	2,76	
Espodossolos	168.595	1,98	
Nitossolos	1 <u>0</u> 2.179	1,20	
Chernossolos	39.168	0,46	
Vertissolos	17.881	0,21	
Organossolos	2.544	0,03	
Águas	156.674	1,84	
Afloramento de Rocha (AR)	11.069	0,13	
Dunas	4.257	0,05	
TOTAIS	8.514.877	100,00	

A CHERNOZÊMICO

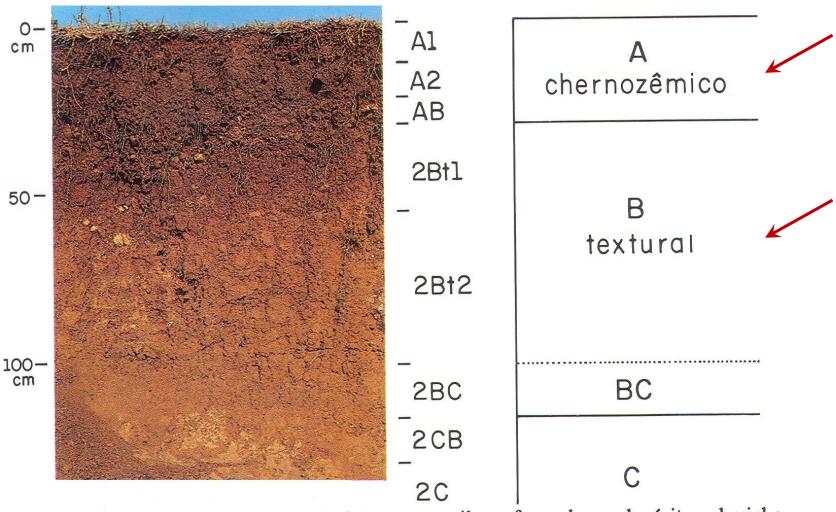
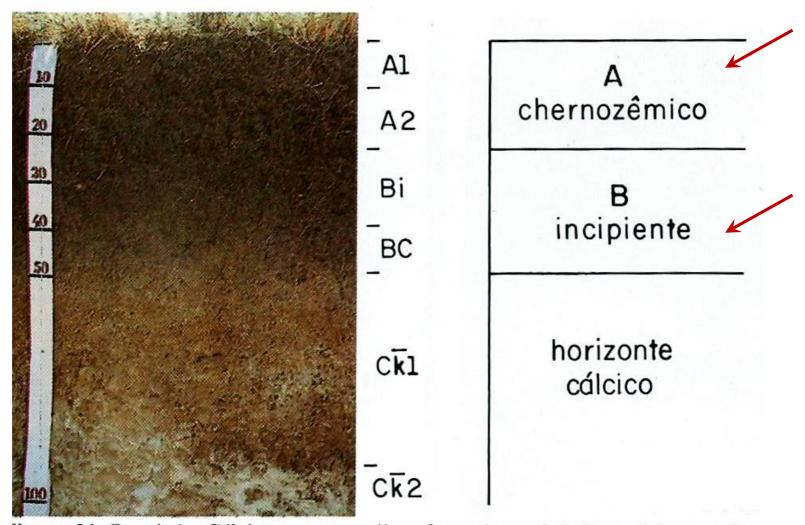
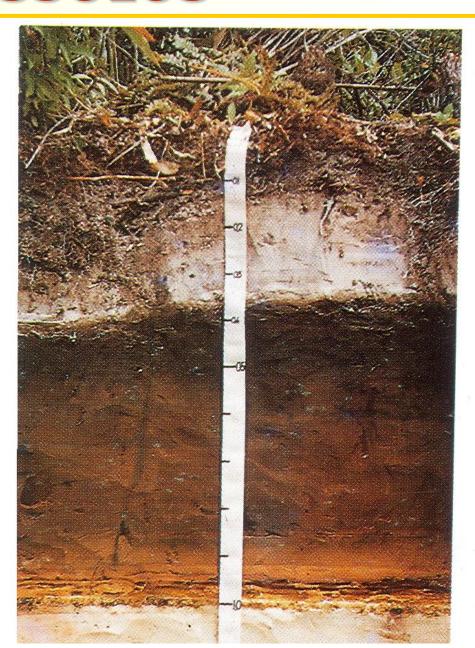
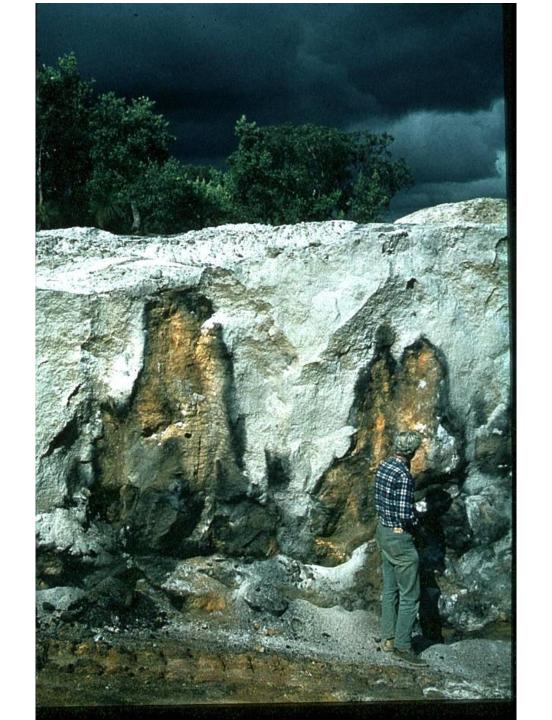



Figura 22. Brunizém Avermelhado textura argilosa, formado em depósito coluvial e saprolito derivados de rochas efusivas básicas. Mun. Analândia, SP. Por definição são solos Ta eutróficos com horizonte A chernozêmico. Foto J.B. de Oliveira.

igura 21: Brunizém Cálcico textura argilosa formado em folhelhos sílticos e síltito argilosos calcíferos. Mun. Bagé, RS. Por definição são solos Te eutróficos com horizonte A chernozêmico. Foto M.N. Camargo.



- Nítida diferenciação entre horizontes;
- Iluviação de MO associada a complexos de Al (com ou sem Fe);



Beach sands, east coast, Malaysia

