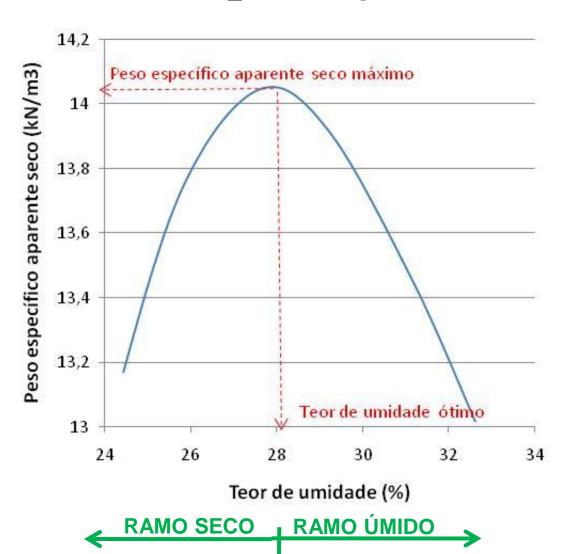
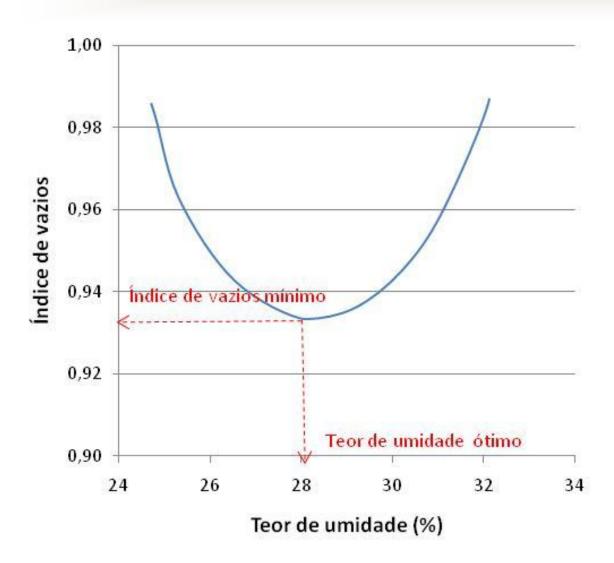

PEF3409 GEOTECNIA E RECUPERAÇÃO AMBIENTAL

COMPACTAÇÃO




MARIA EUGENIA GIMENEZ BOSCOV

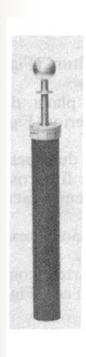
Compactação

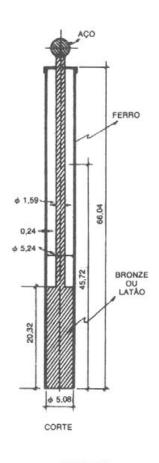
- Compactação de um solo é a redução do índice de vazios por meio de processos mecânicos
- Objetiva homogeneizar o solo e melhorar suas propriedades de engenharia (aumentar resistência ao cisalhamento, reduzir recalques, diminuir permeabilidade etc.)

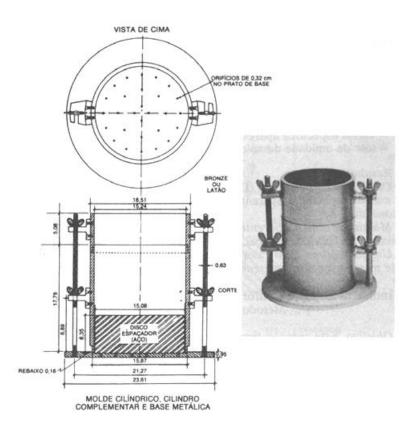
Curva de compactação

Teor ótimo de umidade

- Redução do volume de ar dos vazios é função da umidade; possível até um certo teor, a partir do qual a água adicionada passa a ocupar volume sem conseguir expulsar totalmente o ar.
- No ramo seco: à medida que se adiciona água, ocorre um efeito de lubrificação, que possibilita maior aproximação das partículas do solo.
- No ramo úmido: a água passa a existir em excesso, o que provoca um afastamento da partículas de solo e a conseqüente diminuição da densidade.


Breve histórico


- Porter, California Division of Highways: método para determinar a umidade ótima de compactação dos solos (ponto de máxima compactação).
- Proctor (1933): padronização do ensaio.
- Correções posteriores para energias mais elevadas.
- Parsons (1976): método MCV.


Ensaio de compactação

- NBR6457 Amostras de solo Preparação para ensaios de compactação e ensaios de caracterização
- NBR7182 Solo Ensaio de compactação
- O solo é seco ao ar e à sombra. O solo é homogeneizado.
- Compacta-se uma amostra de solo dentro de um recipiente cilíndrico (molde de 944 cm³ de volume) em 3 (três) camadas sucessivas, sob a ação de 26 golpes de um soquete pesando 2,5 kg, caindo de 30 cm de altura.
- Determinam-se o peso do solo dentro do molde e o teor de umidade correspondente.
- Calcula-se o peso específico e o peso específico seco do solo compactado.
- Repete-se o procedimento para mais teores de umidade.

Ensaio de compactação

SOQUETE

$$\gamma = \frac{P}{V}$$

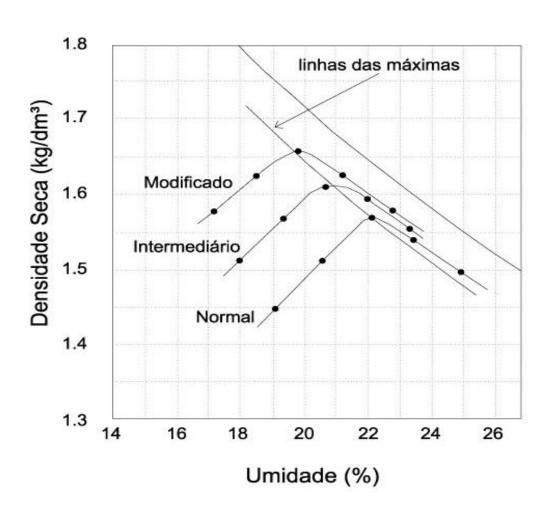
$$V = 1000 \text{ cm}^3$$

$$\gamma_d = \frac{\gamma}{1+w}$$

$$E = \frac{PHNn}{V}$$

E = energia aplicada ao solo, por unidade de volume

P = peso do soquete

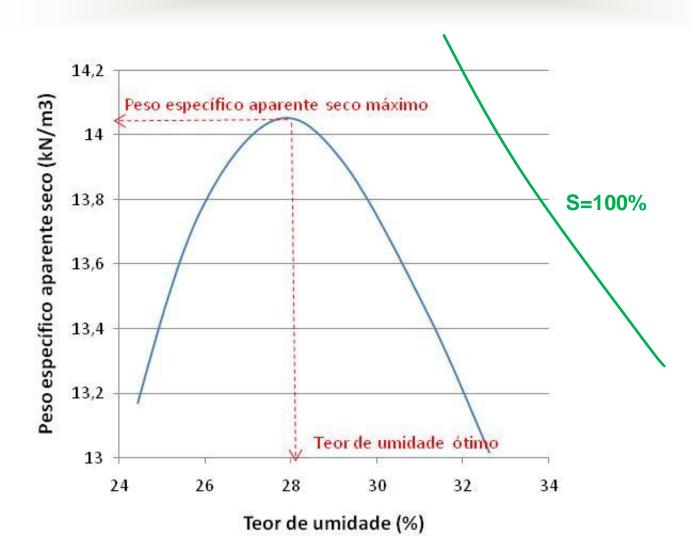

H = altura de queda do soquete

n = número de camadas

N = número de golpes aplicados a cada camada

V = volume do cilindro

Energia normal: $E \approx 6 \text{ Kg.cm/cm}^3 \approx 593 \text{ kJ/m}^3 \approx 593 \text{ kN.m/m}^3$


The second second	Designação	Massa (Kg)	Altura de queda (cm)	Número de camadas	Número de golpes	Volume do cilindro (cm ³)	Energia (Kgf.cm/cm ³)
	Normal	2,5	30,5	3	26	1000	5,9
THE STATE OF	Normal	4,5	45,7	5	12	2000	6,2
	Intermediária	4,5	45,7	5	26	2000	13,4
No. of the last of	Modificada	4,5	45,7	5	55	2000	28,3
	Modificada	4,5	45,7	5	55	2000	28,3

 Densidade seca máxima varia linearmente com o logaritmo da energia aplicada.

Grau de saturação

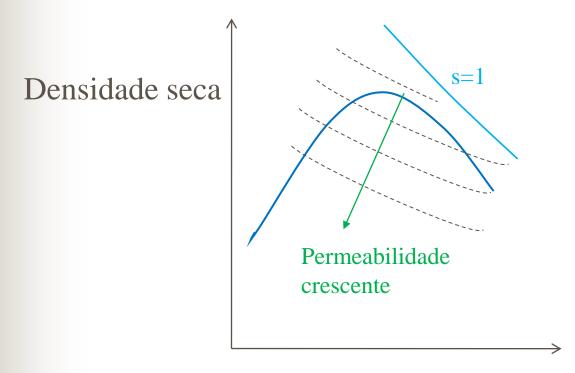
$$\gamma_d = \frac{1}{\frac{1}{\gamma_s} + \frac{w}{s}}$$

 γ_d = peso específico aparente seco γ_s = peso específico dos grãos w = teor de umidade ótimo s = grau de saturação

Grau de saturação

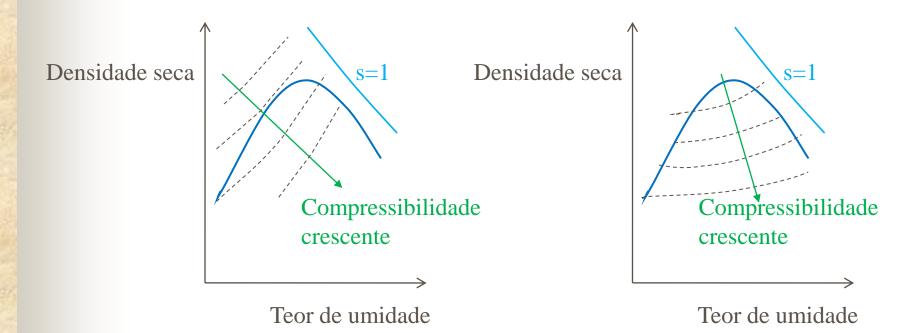
- O solo compactado é um solo não saturado!!!
- A linha de ótimos é aproximadamente uma linha de igual grau de saturação.

TIPO DE SOLO


 Solos arenosos possuem teores de umidade ótima menores e densidades secas máximas maiores do que solos solos siltosos e argilosos

Estrutura do solo compactado

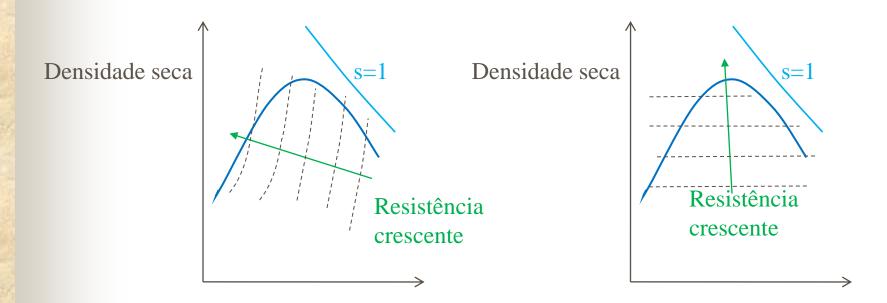
- Lambe (1958): arranjos disperso e floculado (partículas individuais de argila)
- Seed e Chan (1959): influência do tipo de compactação na estrutura
- Olsen (1962): modelo de agregados ("clusters")
- Barden et al (1970), Garcia-Bengochea et al. (1979): agregados deformáveis


Propriedades dos solos compactados

Permeabilidade

Teor de umidade

Compressibilidade edométrica



Umidade natural

Após inundação

(Pinto, 2000)

Resistência

Resistência não drenada (ensaio UU)

Teor de umidade

Resistência efetiva (ensaios CD ou CU)

Teor de umidade

(Pinto, 2000)

Etapas no campo

- Escolha da área de empréstimo (jazida)
- Desmatamento
- Limpeza do terreno
- Escavação
- Transporte
- Espalhamento
- Acerto de umidade (irrigação ou aeração)
- Homogeneização e destorroamento
- Compactação propriamente dita
- Controle de compactação

Terraplenagem

- Transformação da configuração inicial do terreno para atender às condições topográficas de um determinado projeto.
- Os serviços de terraplenagem são sempre os primeiros a serem executados em uma obra, pois mesmo para a instalação do canteiro é necessária alguma terraplenagem.

Escolha da área de empréstimo

- tipo de solo
- distância de transporte
- volume de material
- teor de umidade
- homogeneidade

Desmatamento, destocamento, limpeza e raspagem

- Desmatamento é o corte das árvores logo acima do terreno
- Destocamento é a remoção dos tocos e raízes
- Limpeza é a remoção da vegetação de pequeno porte.
- Raspagem é a remoção do solo orgânico (~30 cm); usualmente este material é estocado e recolocado no terreno para recomposição paisagística.

Escavação

Materiais são divididos em três categorias:

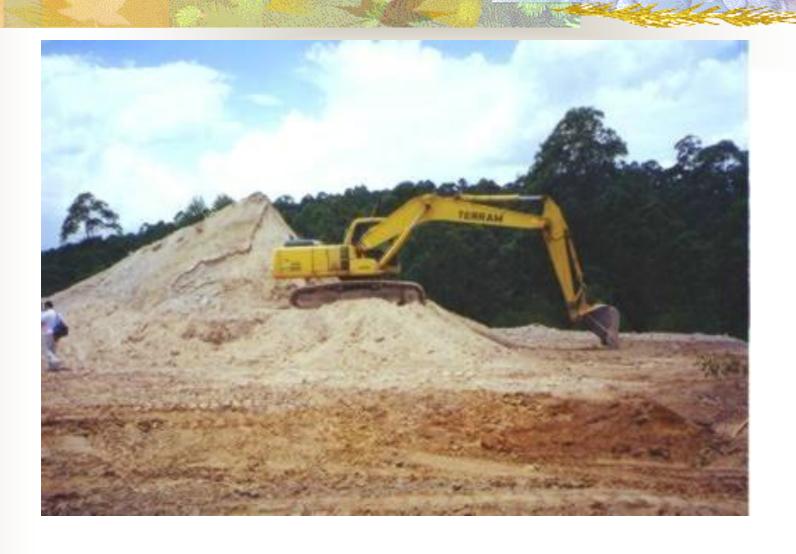
- Solos: podem ser escavados com ferramentas manuais ou máquinas, sem necessidade de prévia desagregação
- Rochas brandas ou misturas de solos com rochas: precisam ser desagregados antes de serem escavados (lâmina de trator de esteira, uso moderado de explosivos etc.)
- Rochas sãs: só podem ser escavados com o uso de explosivos

Deposição e espalhamento

- Camadas de espessura definida em projeto para obter o grau de compactação especificado.
- Ajuste da umidade: umedecimento ou secagem
- Homogeneização (gradeamento)

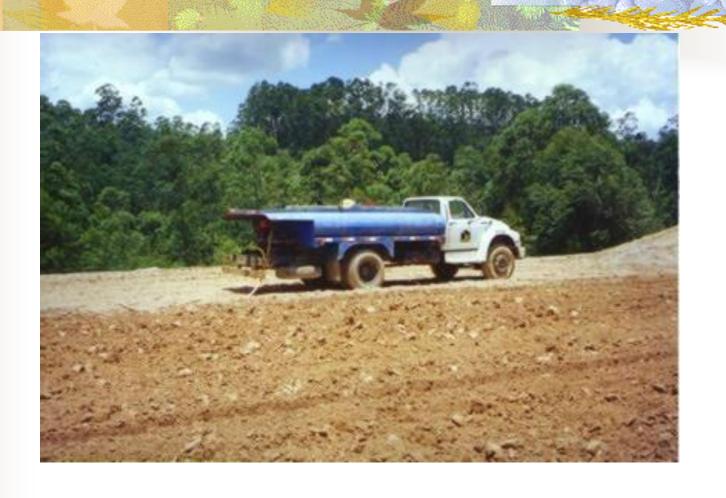
Equipamentos

- Trator de esteira: todos os serviços; escavação; transporte/espalhamento; com implementos: desmatamento, destocamento, limpeza, raspagem, escarificação
- Trator de pneu: reboque de compactadores, de grades de discos, etc.
- Pás-carregadeiras: carregamento, trabalhando em conjunto com caminhões basculantes (rodas ou esteira)
- Caminhões basculantes: transporte


Equipamentos

- Moto-scraper: escavação, carregamento e transporte
- Escavadeiras:escavação e carregamento
- Motoniveladoras: espalhamento preciso, homogeneização, nivelamento, acabamento de taludes.
- Caminhões ou tanques irrigadores: acerto de umidade
- Grades de disco: aeração e homogeneização da umidade (precisam de reboque)

Retroescavadeira


(Bernardes Jr e Ferrari, 2004)

Retroescavadeira

Trator de esteira

Caminhão irrigador – acerto de umidade

Trator de roda - Gradeamento

Equipamentos de compactação propriamente dita

Tipos de compactadores

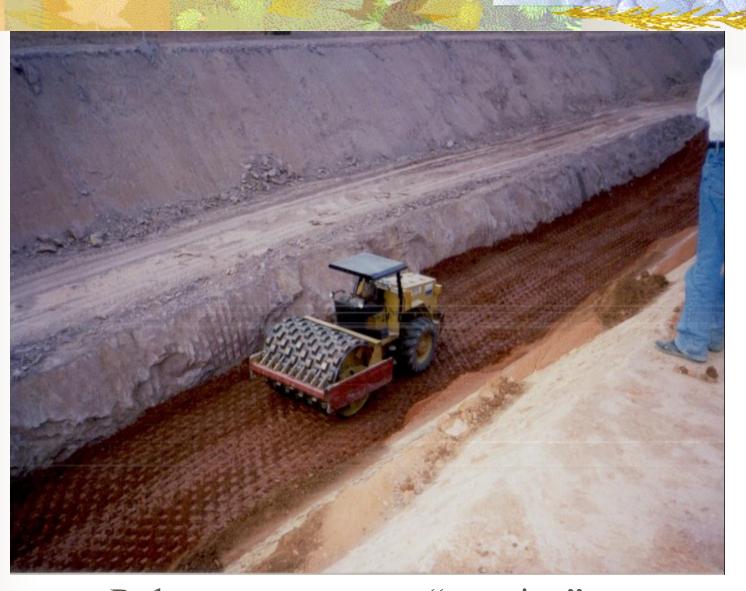
- Pressão, impacto e vibração; ou pela combinação de dois ou todos eles.
- Compressores: rolo liso, rolo de rodas pneumático e rolo pé-de-carneiro.
- Aparelhos de impacto: soquetes pneumáticos ou de combustão interna ou grandes pesos caindo de grandes alturas.
- Vibradores: vibração por meio de placa ou rolo compressor.

Processos de compactação

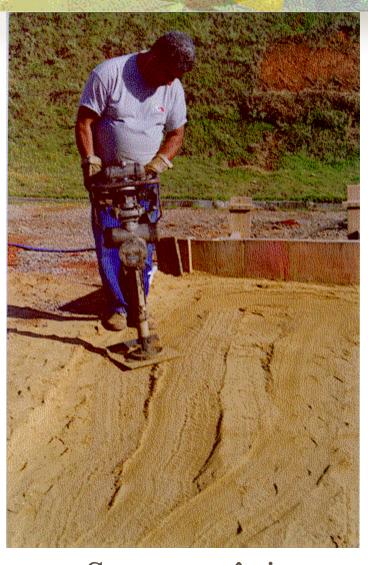
Campo:

- Rolo liso
- Rolo pneumático
- Rolo pé-de-carneiro
- Rolo "tamping"
- Rolo vibratório
- Dozer
- Placa vibratória
- Sapo manual
- Sapo mecânico

Rolo liso

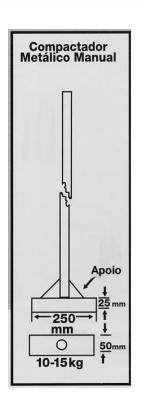


Rolo pé-de-carneiro



Rolo "tamping"

Rolo em campo com "tamping"


(Ferrari, 2005)

Sapo mecânico

(Convênio EPUSP-PTR-LTP / TIGRE, 2003)

Compactador metálico manual

(Convênio EPUSP-PTR-LTP / TIGRE, 2003)

Processos de compactação

Laboratório:

- Impacto
- Pisoteamento
- Vibração
- Estática

Processos de compactação

- No ramo seco, qualquer um desses tipos de compactação conduz a um estrutura floculada
- No ramo úmido, quanto mais a intensa a aplicação de esforços cisalhantes, maior é a orientação das partículas (mais dispersa é a estrutura)
- Consequência: o tipo de processo tem mais influência no ramo úmido

Especificação

Mello (1975)

- Especificar pelo produto final
- Especificar pelo método construtivo: tipo de rolo compactador, número de passadas, velocidade, espessura das camadas (solta e acabada)
- Especificar o produto final com indicações quanto ao método construtivo

Grau de compactação e desvio de umidade

- Estabilidade de taludes: umidade após compactação (pouca influência da densidade na resistência sem drenagem)
- Estabilidade a longo prazo: grau de compactação
- Deformabilidade: fundações deformáveis e solo rígido; fundação não deformável e recalque diferencial do maciço

Controle de compactação

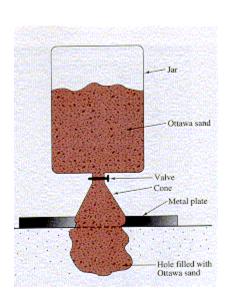
Grau de compactação e desvio de umidade

$$GC = \frac{\gamma_{da}}{\gamma_{dm\acute{a}x}} \qquad \Delta w = w_a - w_{ot}$$

Propriedades desejadas
 Permeabilidade, resistência, resiliência etc.

Grau de compactação

Peso específico aparente in situ:


- Cravação de cilindro
- Funil de areia
- Óleo
- Extração de blocos indeformados
- Método de Hilf
- Método nuclear

Cravação de cilindro

NBR 9813

Funil de areia

Óleo

- Furo de 10 cm de diâmetro por 15 a 20 cm de altura, retirando-se cuidadosamente o solo.
- Determina-se o peso úmido do material que ocupava o volume do furo
- Coloca-se numa proveta certa quantidade de óleo de motor (SAE 30) de peso específico conhecido.
- Enche-se o furo com o óleo.
- Por diferença de peso determina-se o volume do furo.

Densímetro nuclear

Extração de blocos indeformados

Método de Hilf

- NBR12102
- Curva de compactação in situ acrescentando água
- O aterro está com densidade γ_a e umidade w_a
 (desconhecidas)

$$\gamma_{a} = \gamma_{da} (1 + w_{a})$$

■ Deseja-se obter GC e ∆w

$$GC = \frac{\gamma_{da}}{\gamma_{dm\acute{a}x}} \quad e \quad \Delta w = w_a - w_{ot}$$

- Massad, 2003
- Quarteia-se uma amostra de solo do aterro e acrescentam-se diferentes quantidades de água a cada quarto.
- $z_i = \text{massa de água adicionada à amostra i}$ em relação à massa inicial da amostra $\gamma_i = \gamma_a (1 + z_i) = \gamma_d (1 + w_a) (1 + z_i)$
- O teor de umidade correspondente é:

$$w_{i} = \frac{P_{w}}{P_{s}} = \frac{w_{a}P_{s} + z_{i}[P_{s}(1+w_{a})]}{P_{s}}$$

$$w_{i} = w_{a} + z_{i}(1+w_{a})$$

■ Define-se o parâmetro γ_c :

$$\gamma_{ci} = \frac{\gamma_i}{1+z} = \frac{\gamma_d (1+w_a)(1+z)}{1+z} = \gamma_d (1+w_a)$$

Com os pares γ_c e z_i constrói-se uma curva, de onde se obtêm γ_{cmax} e z_m .

Cálculo exato de GC:

$$GC = \frac{\gamma_{da}}{\gamma_{dm\acute{a}x}} = \frac{\gamma_{da} (1 + w_a)}{\gamma_{dm\acute{a}x} (1 + w_a)} = \frac{\gamma_a}{\gamma_{cm\acute{a}x}}$$

Estimativa do desvio de umidade:

$$1 + w_{i} = 1 + w_{a} + z_{i}(1 + w_{a})$$

$$1 + w_{i} = (1 + w_{a})(1 + z_{i})$$

$$1 + w_{ot} = (1 + w_{a})(1 + z_{m})$$

$$\Delta w = w_{a} - w_{ot} = (1 + w_{a}) - (1 + w_{ot})$$

$$\Delta w = \frac{-z_{m}}{1 + z_{m}}(1 + w_{ot})$$

Estima-se w_{ot} ou adotam-se equações empíricas para linhas de ótimos

Estima-se w_{ot} ou adotam-se equações empíricas para linhas de ótimos.

■ Hipérbole de Kucsinski (1950), solos brasileiros:

$$\gamma_{\text{dmax}} = \frac{25,37}{1+2,6w_{\text{ot}}} \pm 0,5(kN/m^3)$$

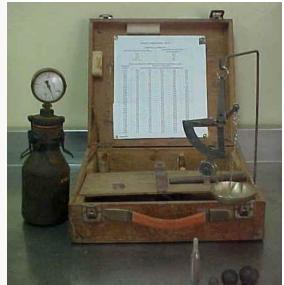
Bernucci (1995), solos lateríticos:

$$\gamma_{\text{dmax}} = 22,62 - 0,26 \text{ w}_{\text{ot}} (\text{kN/m}^3)$$

Teor de umidade

24 horas para ser obtido!

- Tato
- Frigideira
- Speedy
- Estufa de raios infra-vermelhos
- Micro-ondas
- Método nuclear

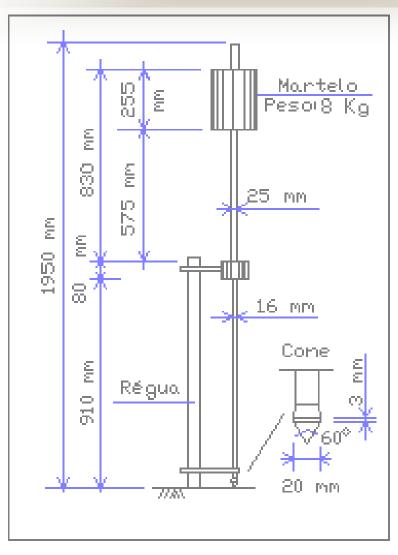

Speedy (Speedy Moisture Test)

■ DNER ME 052/94

$$CaC_2 + 2 H_2O \rightarrow C_2H_2 + Ca(OH)_2$$

(carbureto de cálcio + água → acetileno e hidróxido de cálcio)

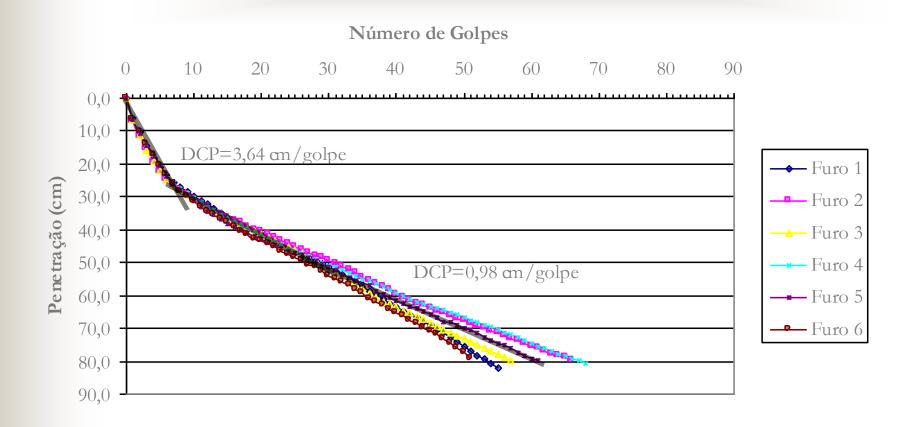
O gás acetileno ao expandir-se gera pressão proporcional à quantidade de água existente no ambiente. A leitura dessa pressão em um manômetro permite avaliar o teor de umidade.



Outros métodos de controle de compactação

- Método de resistividade
- Ensaio de penetração: agulha de Proctor,
 CBR in situ
- Método MCV
- Pavimentos: deflexão com a viga
 Benkelman ou FWD (Falling weight deflectometer)

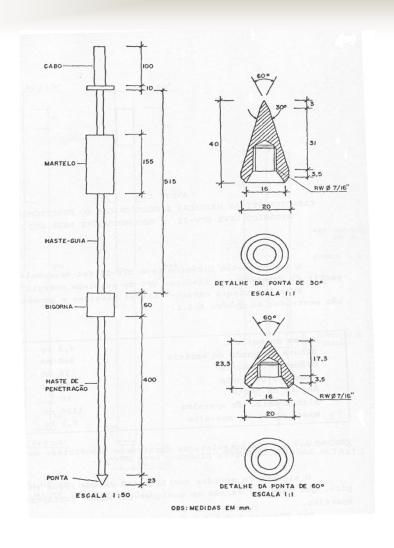
DCP – Penetrômetro Dinâmico de Cone


- Dynamic Cone Penetrometer (Kleyn, 1975)
- capacidade de suporte no estado natural ou compactado
- várias correlações de calibração entre o DCP e outros parâmetros do solo tradicionalmente medidos
- no Brasil, o DCP vem sendo utilizado principalmente em pesquisa (DER-SP/IPAI, 1977; Trichês e Cardoso, 1999)

Penetrômetro Dinâmico de Cone (Trichês e Cardoso, 1999)

DCP – Penetrômetro Dinâmico de Cone

- Recomendado para solos arenosos (pode ser utilizado em solos finos, Röhm 1984).
- Durante o ensaio mede-se a penetração no solo por meio de uma régua acoplada ao equipamento
- Relaciona-se essa medida com o número de golpes necessário para tal deslocamento.
- Representa-se o número de golpes acumulado em função da profundidade penetrada pelo equipamento.
- O índice de penetração é a tangente desta curva, ou seja, a razão entre a profundidade e o número de golpes necessários para penetrar a respectiva profundidade.

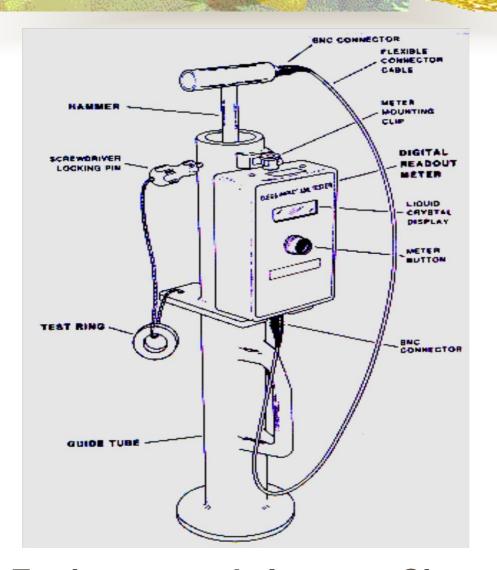


Resultados de controle de compactação com DCP

(CONVÊNIO EPUSP-PTR-LTP / TIGRE TUBOS E CONEXÕES SA)

Penetrômetro dinâmico leve UFV-II

■ Também conhecido como mini-cone, é um equipamento que funciona de maneira semelhante ao Penetrômetro Dinâmico de Cone, só que com dimensões reduzidas. O equipamento foi desenvolvido na Universidade Federal de Viçosa, Minas Gerais (Röhm, 1984).



Vista geral do Penetrômetro Dinâmico Leve UFV-II e detalhe das pontas de 30º e 60º (Röhm, 1984)

Equipamento de impacto Clegg

- composto de soquete de impacto munido com sensor de tensão, tubo-guia com base alargada, alça para transporte manual, display digital para registro da força de repique.
- um acelerômetro na extremidade de um soquete cai de uma altura padronizada e registra em um visor digital um número que se relaciona com a rigidez da camada.
- avalia a "intensidade" no repique ao impacto.
- é utilizado em superfície, mas avalia a camada superficial em conjunto com as subjacentes, pois mede o repique resultante da resposta elástica de uma certa massa de solo, cuja profundidade depende de algumas características de natureza e estado do material.

Equipamento de Impacto Clegg (Trevor Deakin Consultants Ltd)

Equipamento de Impacto Clegg para controle de compactação (CONVÊNIO EPUSP-PTR-LTP / TIGRE TUBOS E CONEXÕES SA)

O soquete cai livremente de uma altura fixa, dentro do tubo-guia, bate na superfície e desacelera a uma velocidade determinada pela capacidade de suporte ou rigidez do material que sofreu o impacto. O acelerômetro marca a desaceleração do soquete no impacto.

São aplicados golpes consecutivos no mesmo lugar; a leitura obtida no quarto golpe é o valor de impacto (IV – Impact Value) do material que está sendo testado.

Quanto maior o grau de compactação da camada, ou seja, quanto mais rígido e resistente for o material, maior será o valor de impacto.

O valor de impacto obtido no quarto golpe pode ser convertido num valor de "CBR equivalente":

$$CBR_{equivalent} = 0.07(IV_4)^2$$