PEF-5916 DINÂMICA E ESTABILIDADE DAS ESTRUTURAS

Lista 8 ESTABILIDADE LIAPUNOV

Questão 1: um oscilador mecânico de um grau de liberdade é caracterizado pela equação de movimento $\ddot{q} + (1+s-r)\dot{q} + (1+r+2s)q = 0$. Identificar no plano dos parâmetros de controle $s \times r$ as regiões de estabilidade e instabilidade e as transições que correspondem a instabilidade dinâmica, instabilidade estática e instabilidade elástica.

Questão 2: as equações de perturbação de uma solução básica são dadas por $\{\delta \hat{y}\} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \{\delta y\}$. Caracterizar a estabilidade Liapunov da solução básica e as

trajetórias de fase nas vizinhanças da origem do plano $\delta y_1 \times \delta y_2$, quando:

a)
$$\lambda_2 = -2$$
; $\lambda_1 = -1$

b)
$$\lambda_2 = 1$$
; $\lambda_1 = 3$

c)
$$\lambda_2 = -2; \quad \lambda_1 = 1$$

d)
$$\lambda_2 = -1$$
; $\lambda_1 = 0$

e)
$$\lambda_2 = 0$$
; $\lambda_1 = 1$

f)
$$\lambda_2 = 2$$
; $\lambda_1 = 2$

g)
$$\lambda_2 = -2$$
; $\lambda_1 = -2$

h)
$$\lambda_2 = 3 - i; \quad \lambda_1 = 3 + i$$

i)
$$\lambda_2 = -3 - i$$
; $\lambda_1 = -3 + i$

$$\mathbf{j)} \quad \lambda_2 = -i; \quad \lambda_1 = i$$