METALURGIA EXTRATIVA DOS NÃO FERROSOS

PMT 2509

PMT 3409

- Eletrólito: criolita (Na₃AlF₆)
 - corresponde ao melhor meio para a eletrólise da alumina (redução eletrolítica), pelos seguintes motivos:
 - É um bom solvente para a alumina
 - Possui um potencial de decomposição superior ao da alumina
 - É um bom condutor de eletricidade

- Possui um baixo ponto de fusão
- Possui boa fluidez
- Possui uma densidade inferior à do alumínio, nas temperaturas operacionais empregadas
- Possui uma baixa pressão de vapor
- Não reage quimicamente com os eletrodos
- Não reage quimicamente com os produtos da eletrólise

- A solubilidade da alumina é função da composição do eletrólito e da temperatura de operação
 - A relação NaF/AIF₃ é denominada razão da criolita e apresenta valor igual a 3, para a condição de criolita no estado puro
 - 1 NaF/AIF3 1 Eficiência de corrente
 - 1 NaF/AIF3 1 Volatilização do eletrólito
 - NaF/AIF₃ = 2 a 3
 - Temperatura de operação = 940 °C a 980 °C

- Diversos aditivos são incorporados ao eletrólito para permitir uma redução na temperatura de operação da cuba eletrolítica e de conduzir a um incremento na eficiência de corrente
 - AIF₃
 - Reduz o ponto de fusão da criolita
 - Neutraliza a soda presente na alumina (0,6% Na₂O), resultando em criolita
 - Maior emissão de F
 - Reduz o "lombo" lateral
 - Aumenta o "lombo" de sola

- O Li₂CO₃ adicionado ao banho transforma-se em LiF
- A resistência elétrica do banho reduz com a presença de LiF.
- Há uma redução de cerca de 9°C na temperatura eutética para cada 1,0 % de LiF no banho.
- A pressão de vapor do banho reduz com a presença de LiF
- O Li se incorpora ao metal e torna-se um problema para fabricação de certas ligas.
- O Li₂CO₃ é bastante caro e seu uso torna-se inviável (US\$22.000/t)

	Solubilidade Al ₂ O ₃	Condutivida de Elétrica	Densidade	Viscosidade	Temperatura do Banho	Solubilidade do Metal	Tensão Superficial	Pressão de Vapor
CaF ₂	 	+	†	→	 	↓	†	•
AlF ₃			¥	+	\frown	↓	 	†
LiF	↓	†	↓	 	↓	¥	†	↓
MgF_2	↓	+	†	†	↓	ŧ	†	\
NaCl	↓	†	ļ	 	 	↓	↓	
NaF	→	†		\frown	\frown	†	†	1
Al_2O_3			ţ	→	 	ţ	→	↓
Temperatura	†	†	Ţ	 		†	1	†

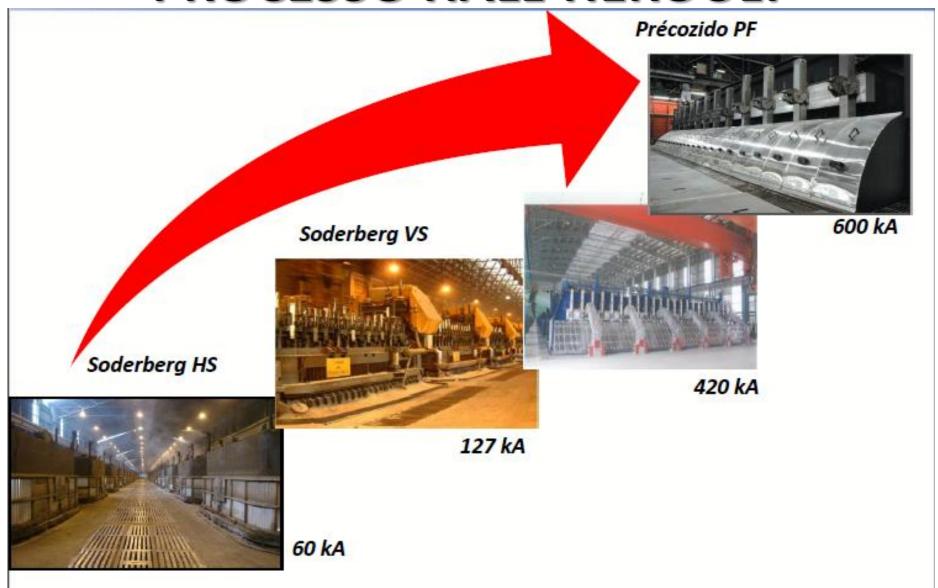
Legenda:

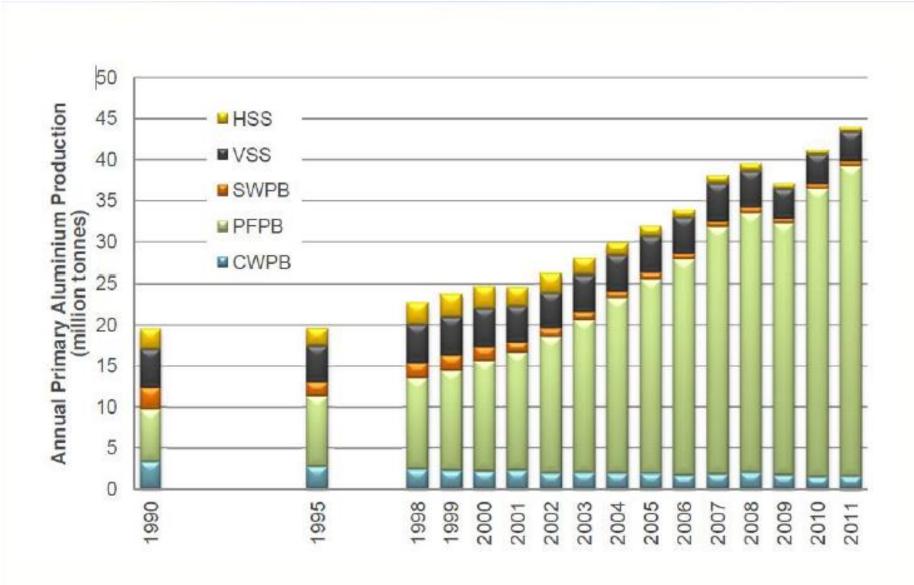
Aumenta ou reduz as propriedades.

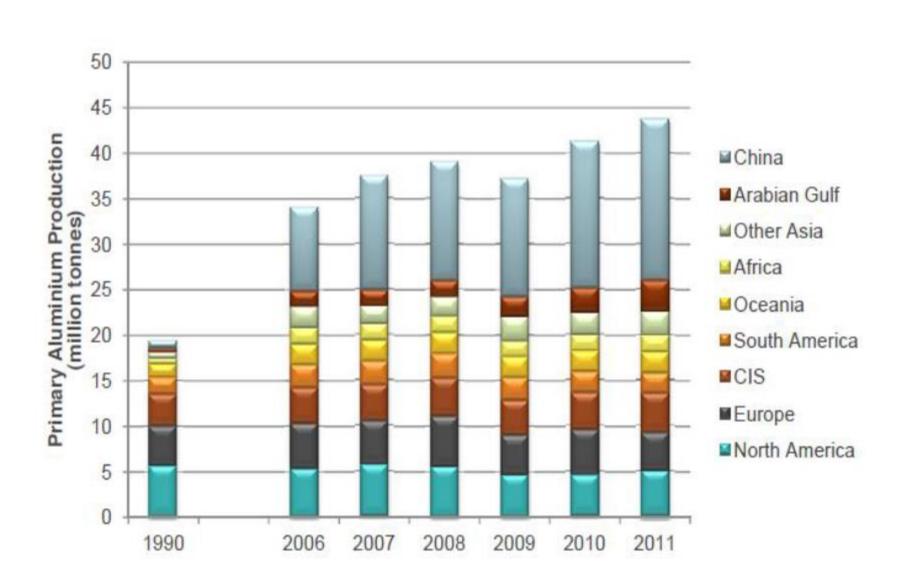
Aumenta ou reduz as propriedades de forma não linear.

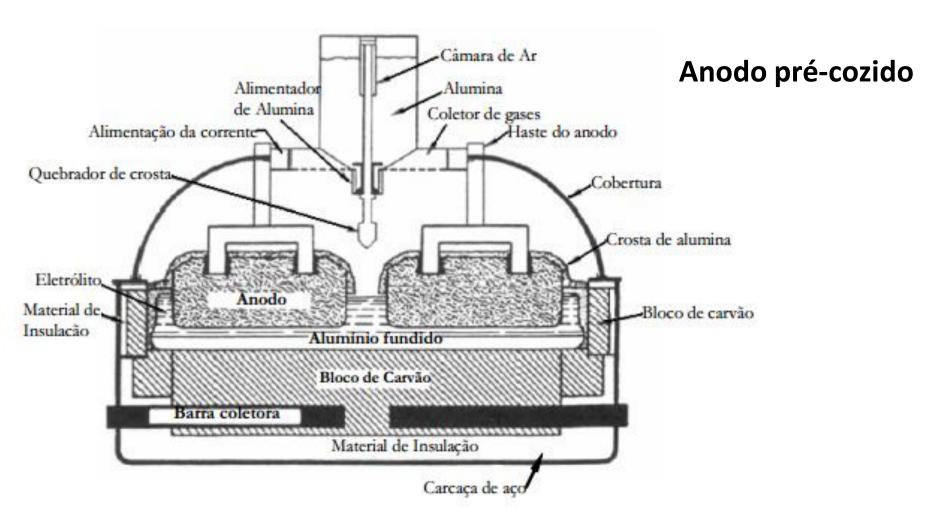
PRODUÇÃO DE CRIOLITA

Fluoreto de Sódio e Aluminio Na₃AlF₆

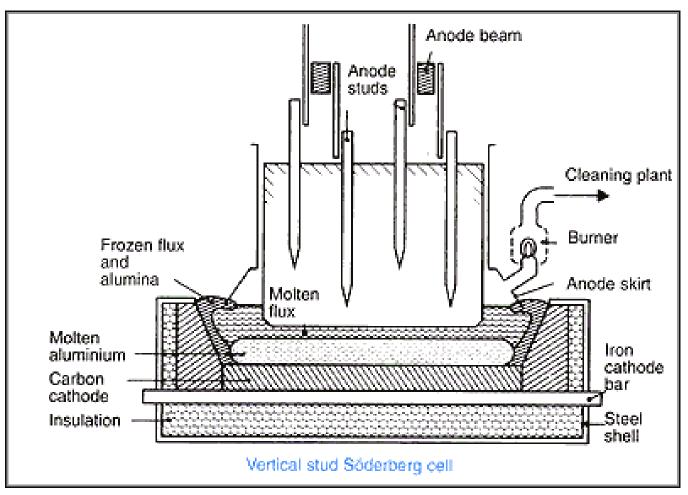

6 NaOH + Al_2O_3 + 12 HF \rightarrow 2 Na₃AlF₆ + 9 H₂O


Composição de l	banho tradicion	al
		%
Criolita	Na ₃ AIF ₆	79,0
Alumina	Al_2O_3	2,5
Fluoreto de Alumínio	AĪF ₃	12,0
Fluoreto de Cálcio	CaF ₂	6,5
Fluoreto de Lítio	LiF	0,0


Composição do banho de Lítio


Criolita	86,5
Alumina	2,5
Fluoreto de Cálcio	5,0
Fluoreto de Alumínio	3,5
Fluoreto de Lítio	2,5

Li é adicionado sob forma de Carbonato de Lítio - Li₂CO₃



Anodo pré-cozido

Anodos Pré-cozido

São formados a partir de mistura de coque de petróleo, anodos moídos já utilizados e piche. Tal mistura, após um processo de prensagem, é aquecida a, aproximadamente, 1100 °C, em fornos aquecidos a gás ou a óleo.

Anodo Söderberg

Anodo Söderberg

Anodos Söderberg

- São formados a partir de mistura de coque de petróleo e piche.
- A mistura é adicionada a um recipiente de aço com dimensões aproximadas de 6-8 m de comprimento, por 2 m de largura e 1 m de altura.
- O calor proveniente do eletrólito e da corrente elétrica efetuam o cozimento da mistura, à medida que esta vai se desenvolvendo no interior do recipiente, de modo a permitir a contínua substituição do anodo posicionado na base do recipiente.

- Efeito da corrente
 - Valores de tensão e de corrente empregados:
 - Tensão: 800V
 - Corrente: 34000 a 130000A
- A eficiência de corrente é função das seguintes variáveis:
 - Temperatura do banho
 - Razão da criolita
 - Distância anodo-catodo
 - Densidade de corrente
- Teoricamente:1kAh de corrente elétrica = 0,3356 kg
 Al
- Na prática: 85% 95% de eficiência de corrente

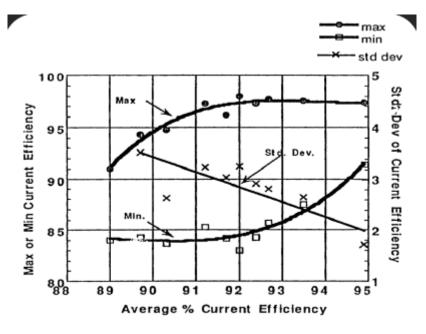
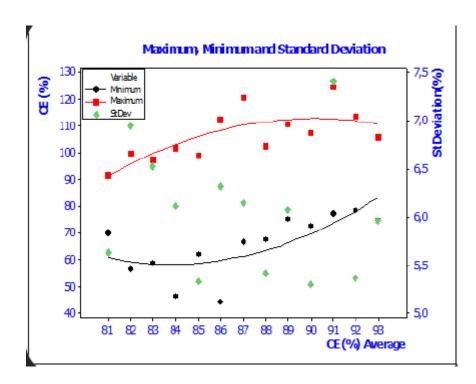
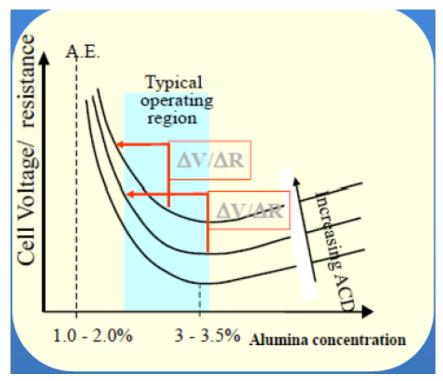



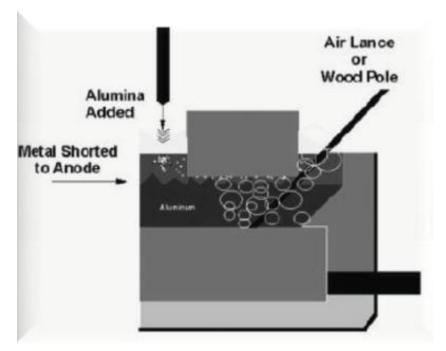
Figure 1: Correlation of Average Current Efficiency with Variation



- Teoricamente:1kAh de corrente elétrica = 0,3356 kg
- Na prática: 85% 95% de eficiência de corrente
- Motivos
 - Solubilidade do alumínio no próprio eletrólito (0,1%, aprox.)
 - Reações de reversão
 - Al + $3NaF = 3Na + AlF_3$
 - 2AI + AIF = 3AIF
 - $2AI + 3CO_2 = AI_2O_3 + 3CO$
 - Reação química entre o alumínio líquido e a superfície do catodo, formando carbeto de alumínio

EFEITO ANÓDICO

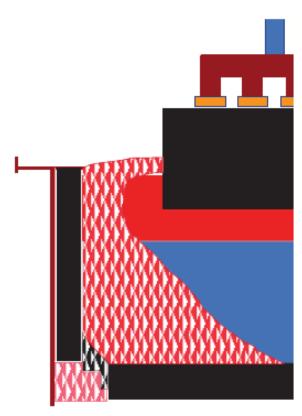
- Estabilidade da Corrente
- Balanço de Energia
- Eficiência de Corrente
- Aumenta o consumo de Energia Elétrica
 - Aumento de voltagem por um determinado tempo
- Impacta o Meio Ambiente:
 - Gases do Efeito Estufa
 - Emissões Fugitivas


- O Efeito Anódico é um fenômeno que ocorre quando o teor de alumina atinge valores inferiores a 2,0 %
 - É um acontecimento previsível

- O aumento da voltagem na ausência de Al₂O₃ provoca a eletrólise do AlF₃ com a formação de PFC's
- Gases gerados tem alta resistência elétrica e cobrem parte da superfície do anodo aumentando a voltagem

Reações Eletroquímicas (início)	Potencial (V)
$2 \text{ AIF}_3 + 2 \text{ C} \Rightarrow 2 \text{ AI} + \text{C}_2 \text{F}_6$	2.607
4 AIF $_3$ + 3 C \Rightarrow 4 AI + 3 CF $_4$	2.389
$Al_2O_3 + 2 AlF_3 + 3 C \Rightarrow 4 Al + 3 COF_2$	1.831
$2 \text{ Al}_2\text{O}_3 + 3 \text{ C} \Rightarrow 4 \text{ Al} + 3 \text{ CO}_2$	1.272

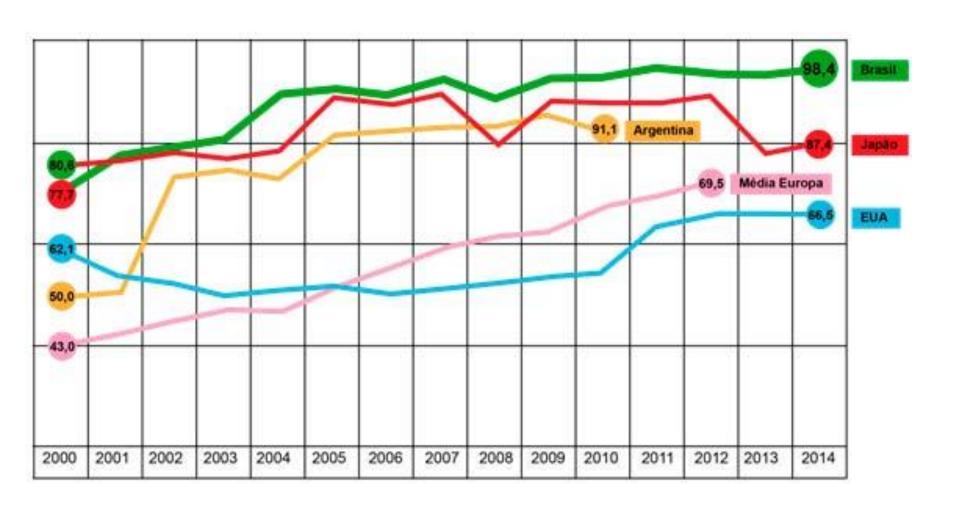
- A extinção do Efeito Anódico pode ser feita de varias maneiras ou combinações:
 - Introdução de vara
 - Sopro de ar seco
 - Movimentação do anodo

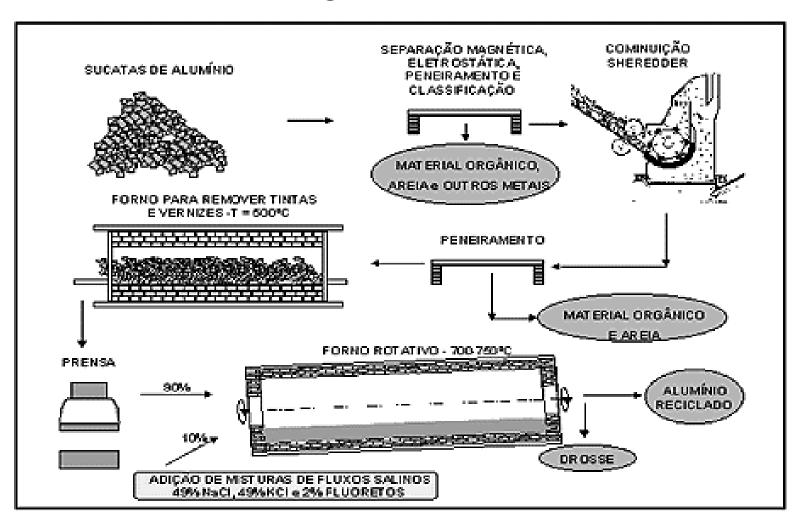

- O Protocolo de Kyoto cobre 6 tipos de gases:
 - √ CO₂ Dióxido de carbono
 - √ CH4 Metano
 - √ N2O Óxido Nitroso
 - √ HFCs Hidrofluorcarbonetos
 - ✓ PFC's Perfluorcarbonetos
 - ✓ SF6 Hexafluoreto de enxofre
- Outros gases :
 - √ Compostos orgânicos voláteis
 - ✓ NOx Óxido de nitrogênio
 - ✓ CO Monóxido de carbono

Gas	Warming	Potentia
-----	---------	----------

)	Gas	GWP
	CO ₂	1
	CH₄	21
	N ₂ O	310
	CF ₄	6500
	C_2F_6	9200

Função do Lombo:


- √ Composição :
- > AIF3:0a3%
- CaF2:0 a 1 %
- ➤ Criolita: > 96 %
- ✓ Proteção lateral da parede interna do forno
- ✓ Previne vazamentos pela vedação das juntas
- ✓ Evita grandes variações de temperatura


Insumos para a produção de alumínio primário (ano-base 2003)				
Alumina	1919 kg/t Al			
Energia elétrica	15,0 MWhcc/t Al			
Criolita	8,0 kg/t			
Fluoreto de alumínio	19,7 kg/t			
Coque de petróleo	0,384 kg/kg Al			
Piche	0,117 kg/kg Al			
Óleo combustível	44,2 kg/t			

http://www.youtube.com/watch?v=fa6KEwWY9HU&feature=related http://www.youtube.com/watch?v=jOKMkagPZvc&feature=related

- Quase todos os metais são reciclados
- A reciclagem do Al é importante pois:
 - É um metal de uso intensivo
 - Sua produção primária utiliza enormes quantidade de energia
- Gasto de energia na reciclagem: ~5% do Al primário
- Libera somente 5% de gases de efeito estufa
- Fontes:
 - Sucatas variadas: latas, perfis, peças, etc
 - Borras de processo
- Limitações: composição química; quase todo Al reciclado é utilizado diluído em Al primário

Fluxograma básico

Tipos de borra

Tipo de borra	% de Al	% de Óxidos	% de sais
Borra branca	25 - 80	20 – 85	0 – 1
Borra preta	7 - 50	30 – 50	30 – 50
Borra salina	3 - 10	20 – 60	20 – 80

 A adição de cloretos e fluoretos serve para fluidificar a borra liberando o Al preso

Forno rotativo basculante

- 1-10 rpm
- 30° a -10°