2.7 NAND anDp NOR LocGic NETWORKS

A simplified POS expression can be derived as

f =0 +x2) +x3)((x1 +x2) +X3)(x; + (2 +5))E + (0 +53))
= ((x1 +x2) + x303) (1 X1 + (02 + X3))
= (x1 + x2){(x2 + Xx3)
Note that by using the distributive property 125, this expression leads to
f=x+xi1x%3

which is the same as the expression derived in Example 2.3.

suppose that a four-variable function is defined by Exal
fex,x,x) =) m(3,7,9,12, 13, 14, 15)
The canonical SOP expression for this function is
f = X1X2Xaxq + X1X2X3%4 + X1 X0X3X4 + X X2X3X4 + X1 X2X3X4 + X1X2X3X4 + X1 X2X3X4
A simpler SOP expression can be obtained as follows

f =X + x2)x3x4 + X1 (X2 + x2)X3x4 + X1.00%3 (%4 + xg) + x10003 (%4 + x4)
= X1X3X4 + X1X3X4 + X1X2X3 + Xy X0X3
= X1X3X4 + X1 X3%4 + X122(X3 + x3)

= X1X3X4 + X1X3X4 + X122

2.7 NAND anND NOR LoGIc NETWORKS

We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.
There are other basic logic functions that are also used for this purpose. Particularly use-
ful are the NAND and NOR functions which are obtained by complementing the output
generated by AND and OR operations, respectively. These functions are attractive because
they are implemented with simpler electronic circuits than the AND and OR functions, as
Wwe will see in Chapter 3. Figure 2.20 gives the graphical symbols for the NAND and NOR
gates. A bubble is placed on the output side of the AND and OR gate symbols to represent
the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,
then we should ask whether these gates can be used directly in the synthesis of logic circuits.
In section 2.5 we introduced DeMorgan’s theorem. Its logic gate interpretation is shown
in Figure 2.21. Identity 15a is interpreted in part (a) of the figure. It specifies that a
NAND of variables x1 and x; is equivalent to first complementing each of the variables
and then ORing them. Notice on the far-right side that we have indicated the NOT gates

45

CHAPTER 2 « INTRODUCTION TO LOGIC CIRCUITS

(a) NAND gates

x, —

X "2
x; D— Xy +xy : X tx,+...+x,
xn
(b) NOR gates

Figure 2.20 NAND and NOR gates.

e

D I g [S

: D}— xl-xz-...'xn

% Dcﬁf_

(b) X1 +Xy = X1%;

Figure 2.21 DeMorgan’s theorem in terms of logic gates.

46

2.7 NAND anDp NOR LocGic NETWORKS

simply as bubbles, which denote inversion of the logic value at that point. The other half of
DeMorgan’s theorem, identity 155, appears in part (b) of the figure. It states that the NOR
function is equivalent to first inverting the input variables and then ANDing them.

In section 2.6 we explained how any logic function can be implemented either in sum-
of-products or product-of-sums form, which leads to logic networks that have either an
AND-OR or an OR-AND structure, respectively. We will now show that such networks
can be implemented using only NAND gates or only NOR gates.

Consider the network in Figure 2.22 as a representative of general AND-OR networks.
This network can be transformed into a network of NAND gates as shown in the figure.
First, each connection between the AND gate and an OR gate is replaced by a connection
that includes two inversions of the signal: one inversion at the output of the AND gate and
the other at the input of the OR gate. Such double inversion has no effect on the behavior of
the network, as stated formally in theorem 9 in section 2.5. According to Figure 2.21a, the
OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw
the network using only NAND gates, as shown in Figure 2.22. This example shows that
any AND-OR network can be implemented as a NAND-NAND network having the same
topology.

Figure 2.23 gives a similar construction for a product-of-sums network, which can be
transformed into a circuit with only NOR gates. The procedure is exactly the same as the
one described for Figure 2.22 except that now the identity in Figure 2.21b is applied. The
conclusion is that any OR-AND network can be implemented as a NOR-NOR network
having the same topology.

| *1
x2 Xq
B & i
X4 X4
x5 _I_D x, Ik

o I

Xy

xg

J
-
)D_

Figure 2.22 Using NAND gates to implement a sum-of-products.

47

CHAPTER 2 + INTRODUCTION TO LOGIC CIRCUITS

X *
e — .
x3 <::> x3
X5 X5

“0g

0y

Figure 2.23 Using NOR gates to implement a product-of-sums.

le 2.6 Let us implement the function

flx,x3) =Y _m(2,3,4,6,7)

using NOR gates only. In Example 2.4 we showed that the function can be represented by
the POS expression

f = (x; +x2)(x2 +X3)

An OR-AND circuit that corresponds to this expression is shown in Figure 2.24a. Using
the same structure of the circuit, a NOR-gate version 1s given in Figure 2.24b. Note that x3
is inverted by a NOR gate that has its inputs tied together.

le 2.7 Let us now implement the function

FOn,x,x3) =) m(2,3,4,6,7)
using NAND gates only. In Example 2.3 we derived the SOP expression
f=x+xx

which is realized using the circuit in Figure 2.25a. We can again use the same structure
to obtain a circuit with NAND gates, but with one difference. The signal x; passes only
through an OR gate, instead of passing through an AND gate and an OR gate. If we simply
replace the OR gate with a NAND gate, this signal would be inverted which would result

in a wrong output value. Since x, must either not be inverted, or it can be inverted twice,
48

2.7 NAND anDp NOR LocGic NETWORKS

) DY
o« >

(a) POS implementation

(b) NOR implementation

Figure 2.24 NOR-gate realization of the function in Example 2.4.

xl —I_)-
r — o1

(a) SOP implementation

7

*1 |

(b) NAND implementation

: -
-

Figure 2.25 NAND-gate redlization of the function in Example 2.3.

49

CHAPTER 2 . InTRODUCTION TO LoGIic CIRCUITS

we can pass it through two NAND gates as depicted in Figure 2.2556. Observe that for this
circuit the output fis

f =)—Cz . xI)_C3
Applying DeMorgan’s theorem, this expression becomes

[=x + x1%3

2.8 DESIGN EXAMPLES

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of a computer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give two simple examples of design.

2.8.1 THREE-WAY LicHT CONTROL

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

As a first step, let us turn this word statement into a formal specification using a truth
table. Let x1, x2, and x3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. If f(x;, x2, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.26.
The canonical sum-of-products expression for the specified function is

f=m +m+my+m

= X1X2X3 + X1X2X3 + X1X2X3 + X1X2X3

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.27a.

50

2.8 DESIGN EXAMPLES

Rx
o
2
-
o

_————0 0 O o
—_—_0 O~ ~, OO
— O =R O =0 =0
OO = O —=O |-

Figure 2.26 Truth table for the three-way light
control,

An alternative realization for this function is in the product-of-sums form. The canon-
ical expression of this type is

f=My-M;y. -Ms. Mg
= (x1 +x2 +x3)(x1 + X2 +X3) (X1 + x2 +X3)(xX1 + X2 + x3)

The resuiting circuit is depicted in Figure 2.27b. It has the same cost as the circuit in part
(a) of the figure.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

2.8.2 MuLTIPLEXER CIRCUIT

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
X1 and x;. The values of these signals change in time, perhaps at regular intervals. Thus
sequences of Os and [s are applied on each of the inputs x; and x,. We want to design a
circuit that produces an output that has the same value as either X1 Or x», dependent on the
value of a selection control signal s. Therefore, the circuit should have three mputs: xi,
X2, and s. Assume that the output of the circuit will be the same as the value of input x; if
§ =0, and it will be the same as x; if s = 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2.28a. From the truth table, we derive the canonical sum of products

F (s, x1, x2) = Sx1X2 + 5x1x2 + 5% X + sx1x2

51

CHAPTER 2 . INTRODUCTION TO LOGIC CIRCUITS

ARA

slele]e

(a) Sum-of-products realization

" YVYY

(b) Product-of-sums realization

Figure 2.27 Implementation of the function in Figure 2.26.

Using the distributive property, this expression can be written as
f =75x1(% +x2) + 51 +x1)x2
Applying theorem 85 yields
f=sx1-14+s5-1-x
Finally, theorem 6a gives

f = §x1 + $x3

52

2.8 DEsSIGN EXAMPLES

§ X1 X2 fls, x1.x2)
000 0
001 0
010 1
011 1
100 0
101 1
110 0
111 1

(a) Truth table

-
—1 -

(b) Circuit (c) Graphical symboi

kY fs,x1.x2)

0 X1

1 X7

(d) More compact truth-table representation

Figure 2.28 Implementation of a multiplexer.

A circuit that implements this function is shown in Figure 2.28b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
Or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit
“multiplexes” input signals onto a single output.

53

