
ENFERMIDADES TRANSMITIDAS POR ALUMENTOS CAUSADAS POR BACTÉRIAS GRAM-POSITIVAS FORMADORAS DE ESPOROS

- √ Bacillus cereus
- √ Clostridium botulinum
- ✓ Clostridium perfringens

Prof. Uelinton Pinto Faculdade de Ciências Farmacêuticas Universidade de São Paulo uelintonpinto@usp.br

Bacillus cereus

Bastonetes

Gram-positivos

Anaeróbio facultativo

Esporulado

Móveis

Temperatura ótima: 37°C

>63.000 casos por ano nos EUA

Algumas estirpes são psicrotróficas: 4°C-5°C

Habitat

- solo e vegetação
 - esporos amplamente distribuídos na natureza
- parte da microbiota gastrointestinal transitória
- Competidor fraco desenvolve-se melhor em alimentos cozidos

Célula vegetativa – termosensível

Esporo - termoresistente

Fatores que afetam a multiplicação

- pH
 - **-4,4-9,3**
- a_w
 - 0,912 0,99...
 - Ótima >0,95
- T
 - -4-55 °C
 - ótima 28 35°C
 - cepas psicrotróficas
 - problema para alimentos refrigerados com VP longa

B. cereus

- Número de surtos e casos sub-estimados
 - curta duração
 - geralmente baixo número de afetados
- Ocorrência de doença
 - varia de país a país
 - tipo da síndrome
 - Importante causa de gastroenterite na Europa mas pouca importância nos EUA

Bacillus cereus

Duas síndromes: diarreica e emética

Dependendo da cepa, poderá causar qualquer uma das duas síndromes – a emética com início rápido, ou a diarreica com um início mais demorado, atacando o intestino

Síndrome diarreica (gastroenterite semelhante a *C. perfringens*)

- > 3 toxinas termolábeis (alto peso molecular)
- produzidas "in vivo" no intestino delgado durante a fase de esporulação
- Sintomas não são severos
- Surtos subnotificados em todo o mundo

Bacillus cereus

Síndrome diarreica

- 3 tipos de enterotoxinas já foram identificados
 - Hemolisina BL (hbl)
 - 1993
 - Enterotoxina não hemolítica (Nhe)
 - 1995 1996
 - Citotoxina K (CytK)
 - 1998

Síndrome diarreica

- Mecanismo de ação
 - mecanismo preciso ainda não bem esclarecido
 - liga-se às células epiteliais do ID
 - rompe membrana epitelial
 - provoca desequilíbrio eletrolítico
 - má absorção e necrose da mucosa intestinal

Síndrome diarreica

- Altos números do micro-organismos $\rightarrow 10^5$ 10^7 cel ing.
- + frequente na Europa e América do Norte
- Incubação: 8 a 16 hrs
- Sintomas: dores abdominais diarréia aquosa
- Duração dos sintomas
 6 24 h (média 12 h); ocasionalmente alguns dias

Veículos comuns: produtos cárneos, sopas, sobremesas, hortaliças, molhos, amiláceos, leite e derivados

Síndrome emética

- > frequente no Japão
- + severa e aguda
- > Toxina pré-formada resistente ao calor! (peptídeo pequeno)
- > Estimulação do nervo vago
- Provoca emesis (vômito) semelhante aos sintomas da enterotoxina estafilocócica.

Bacillus cereus

Síndrome emética

- Incubação: 30 min a 5 hrs
- Sintomas: náuseas
 vômitos

ocasionalmente diarréia

- População de *B. cereus* em alimentos envolvidos nestes surtos
 - 10⁵ -10⁸ UFC/g

Síndrome emética

- Duração: 6 24 h
- Agente causal

toxina emética pré-formada no alimento (cereulide)

- · Características da toxina
 - peptídeo circular 1,2 kDa (termorresistente)
 - · 90' @ 121°C
 - Estável em pH 2 11
 - · Resistente a tripsina, pepsina
 - · Produzida por cél. vegetativas no alimento
 - · final da fase exponencial / início da estacionária

Síndrome emética

- Modo de ação
 - liga-se ao nervo vago (receptor 5-HT3)
 - estimula centro do vômito
- Dose necessária de cereulide
- \sim 10 µg/kg de peso corporal
- $S. aureus = 0.1 \mu g/kg$

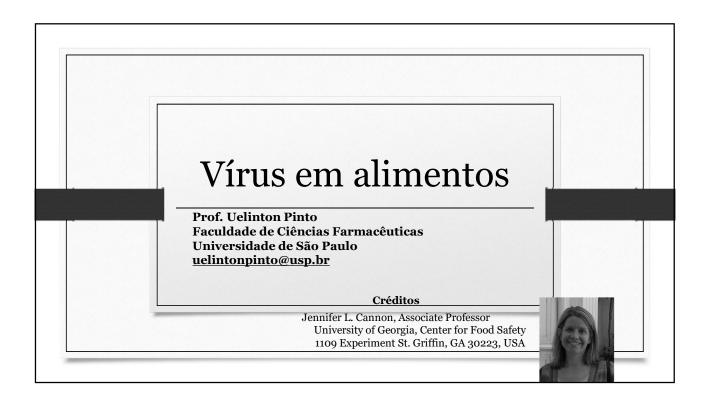
 $0.01 - 1280 \mu g/g$ de alimento envolvido em surto

Síndrome emética

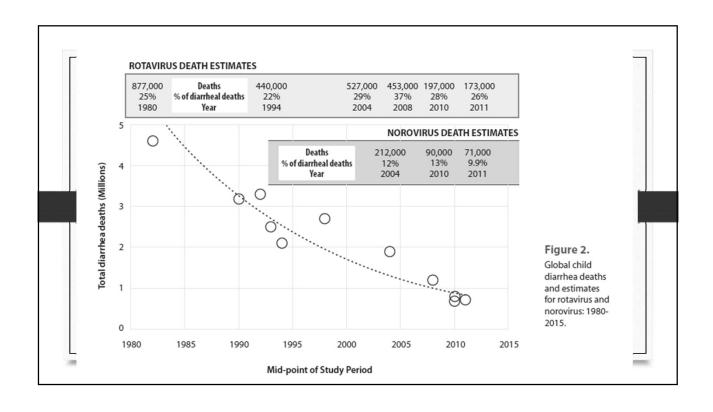
- Sintomas
 - náusea, vômitos, mal-estar
 - algumas vezes com diarreia se enterotoxina também presente

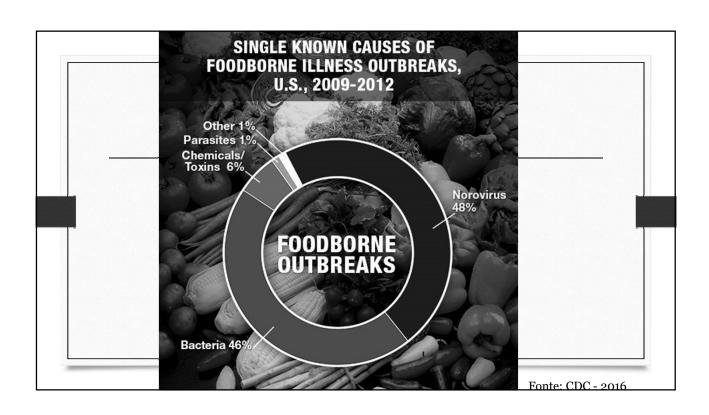
Alimentos: farináceos contendo cereais, principalmente arroz frito ou cozido! Massas em geral, doces, brotos de vegetais

Abuso de temperatura e tempo


Tratamento

Reposição hidroeletrolítica se necessário

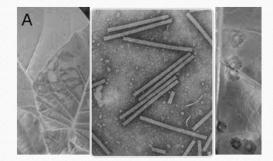

Medidas preventivas e de controle


- Treinamento e educação de manipuladores de alimentos
- Prevenção da multiplicação das células vegetativas em alimentos cozidos e RTE
 - Manutenção da temperatura < 5°C ou > 60°C
 - Não manter pratos cozidos a temperatura ambiente
- Destruição do micro-organismo:
 - Tratamento térmico adequado
 - Irradiação
 - Alta pressão

Características	Síndrome diarreica	Síndrome emética		
Dose	10 ⁵ a 10 ⁷ (total)			
Toxina produzida	No intestino delgado (esporulação)	Pré-formada no alimento		
Tipo de toxina	Proteína, enterotoxina	Peptídeo cíclico, toxina emética (cereulide)		
Período de incubação	8-16 h (até >24h)	0.5-5 h		
Duração	12-24 h (até alguns dias)	6-24 h		
Sintomas	Dores abdominais, diarreia aquosa, nausea ocasionalmente	Nauseas, vômitos, mal estar, ocasionalmente diarreia devido a produção concomitante de enterotoxina.		
Alimentos envolvidos	Produtos cárneos, sopas, vegetais, pudins, molhos, leite e derivados	Arroz cozido ou frito, massas, doces		

Breve histórico da virologia

Primórdios (até o final dos 1800s)

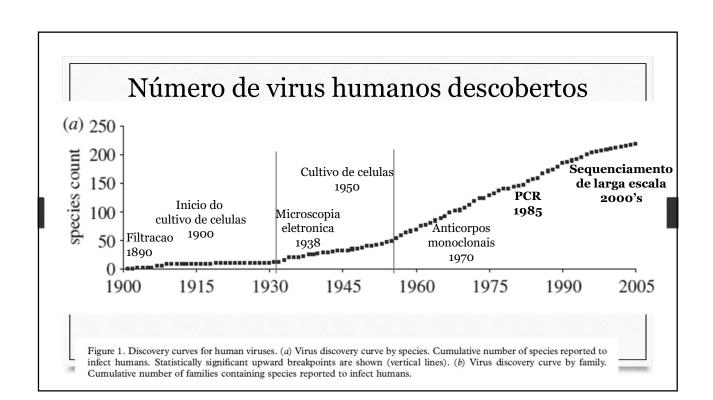

- Pensava-se que as doenças infecciosas eram causadas por maus odores, "vapores" provenientes de sujeira
- Acreditava-se que ar puro e perfumes podiam combater essas doenças
- Nessa época houve o nascimento da teoria sanitária
- · Nascimento da teoria do contágio e quarentena

Virologia e vacinas

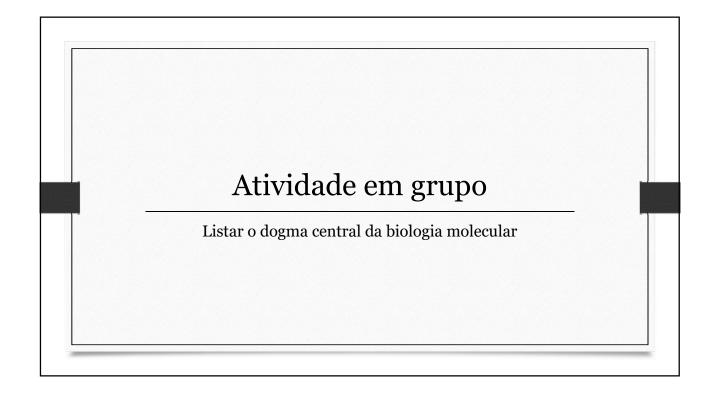
- · Vacinas foram desenvolvidas antes mesmo do entendimento dos virus
- Nos anos de 1700, a varíola era endemica 400 mil mortes anualmente na Europa
- Os chineses foram os primeiros a introduzir uma técnica de prevenção que foi passada para a Turquia e repassada para o mundo ocidental na Inglaterra.
- Lady Mary Wortley Montagu http://en.wikipedia.org/wiki/Lady_Mary_Wortley_Montagu

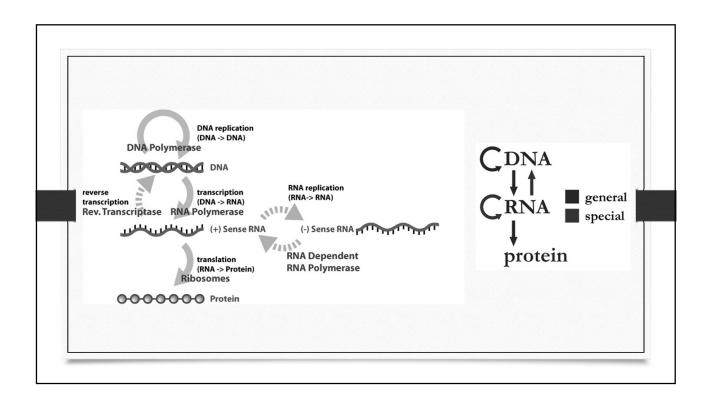
Descoberta dos virus

- Dmitri Iwanowski: 1892
- Trabalho com doença do tabaco
- Agente infectante menor que bactérias – o filtrado podia ser transferido para plantas e causar doença
- Tobacco mosaic virus


Outras descobertas importantes

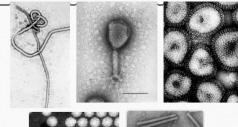
Primeiro virus animal descoberto (1898)

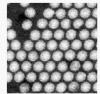

• Síndrome mão-pé-boca (foot an mough disease FMD)


Primeiro agente infeccioso filtrável de humanos

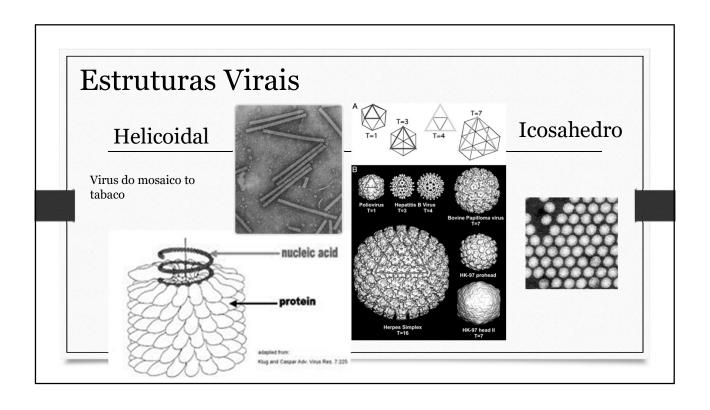
- Virus da febre amarela (1901)
- Virus da Polio (1908)
- Bacteriófagos (fagos) Frederick Twort e Felix d'Herelle.
 - Infectam bactérias (1915)
- → Uso de fagos no desenvolvimento da biologia molecular

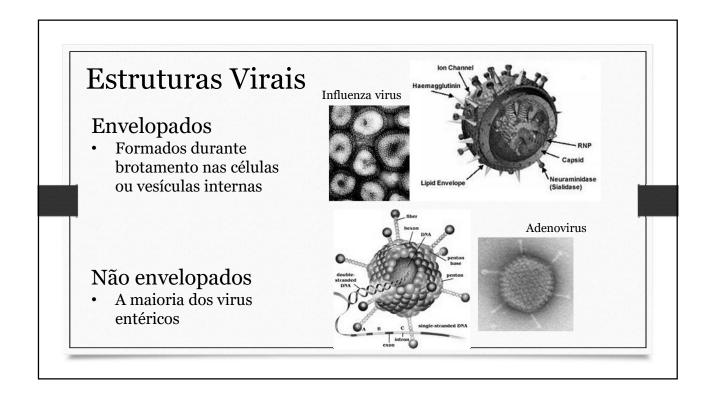
Podcasts! TWiV 17: Seminal discoveries in virology http://www.microbe.tv/twiv/twiv-17-seminal-discoveries-in-virology/

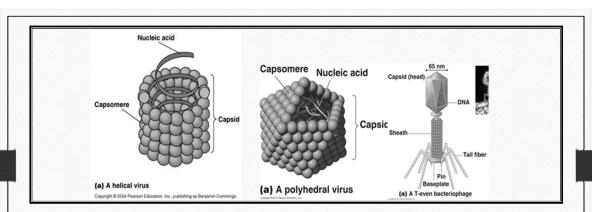


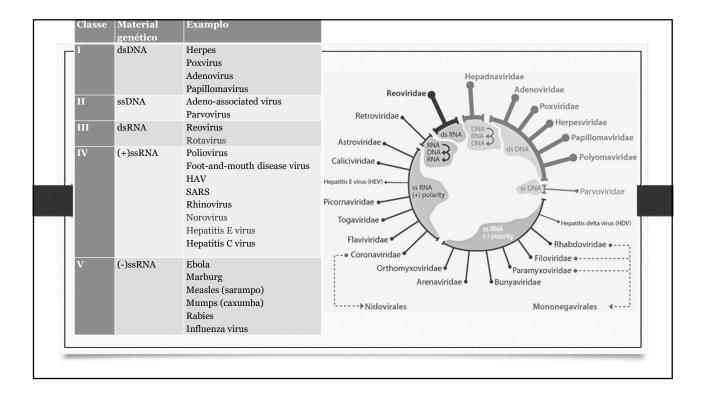

O que são os virus?

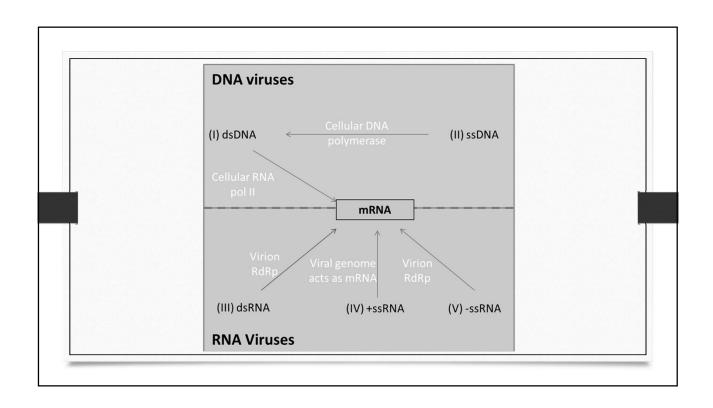
- Parasitas intracelulares obrigatórios
 - Não se replicam sem um hospedeiro
 - Não crescem no ambiente
 - Não produzem suas próprias proteínas e nem metabolizam nutrientes
- O que infectam?
 - Todos os seres vivos: plantas, animais, bacterias, fungos, etc.
 - · Normalmente específicos para uma dada espécie

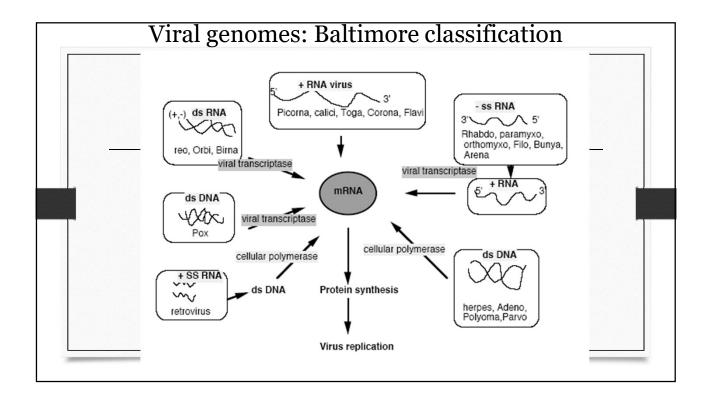

Vários formatos e tamanhos


- Diâmetro: ~5-400 nm
 - maioria ~30 nm
 - O maior é o Pithovirus (1,500 nm)
- Bacteria: média >2,000 nm
- http://learn.genetics.utah.edu/content/cells/scale/



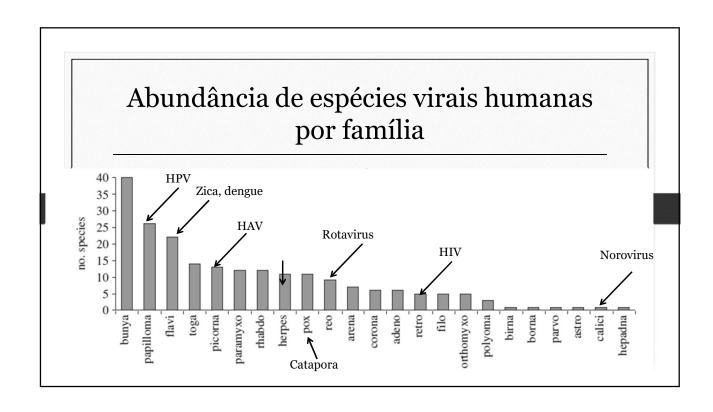





- Capsideo protege o genoma viral (desecação, UV, compostos químicos e danos físicos)
- Capsídeo proteico reconhece células hospedeiras (tropismo)
 - Virus envelopados usam proteínas de membrana para tropismo

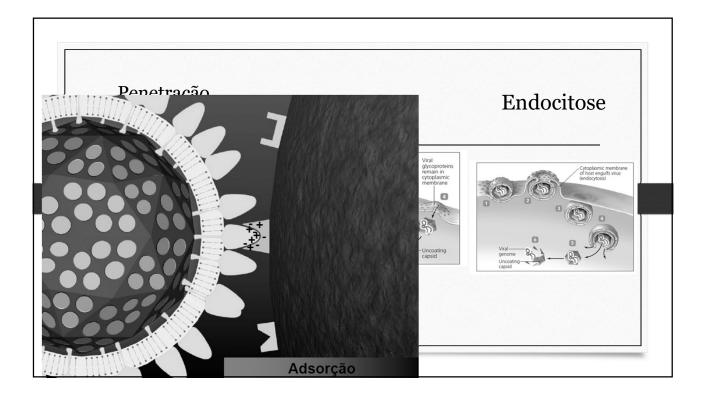
Genomas virais

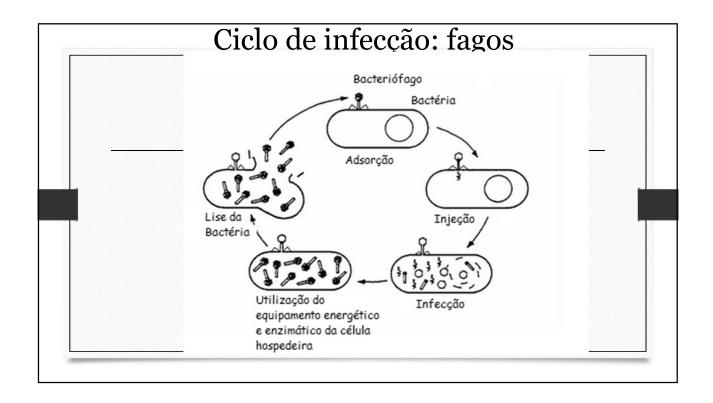
- DNA/RNA
- Fita simples (ss) ou dupla (ds)
- Fita senso (+) ou antisenso (-)
- · Linear ou circular
- · Segmentado ou não-segmentado
- Variados tamanhos: de 2 kb a 2.5 mb
- · Policistronico ou monocistronico
 - Número de proteínas codificadas na fita simples de mRNA

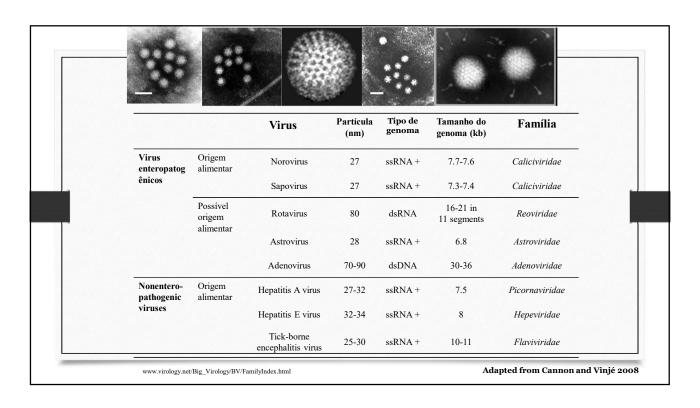


Taxonomia viral

- ICTV: International Committee on Taxonomy of Viruses
 - http://www.ictvdb.org/index.htm
- Ordem
- Família & subfamília
- Gênero & subgênero
- Éspecie
- · Estirpe ou isolado


- 7 ordens
- 103 familías
- 455 gêneros
- > 2,800 espécies
- >40,000 estirpes e isolados
- Números continuam aumentando




Aspectos gerais

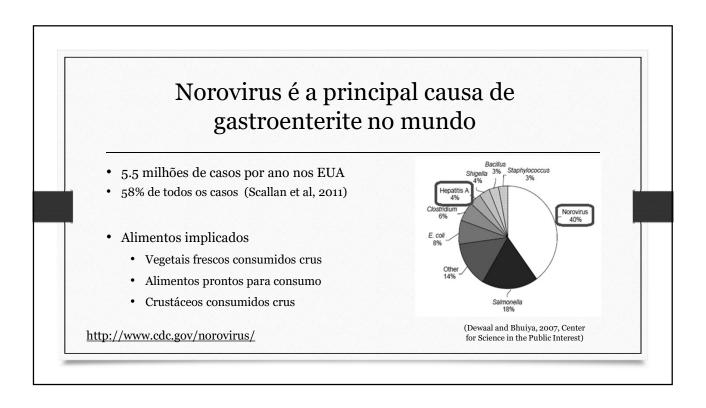
- Adesão
 - Receptores celulares reconhecidos pelo virus
- Penetração
 - Direta ou por fusão da membrana ou endocitose
- Replicação e expressão gênica
 - Depende do genoma
- Maturação
- Liberação
 - Brotamento ou ruptura da célula (ou lisogenia)

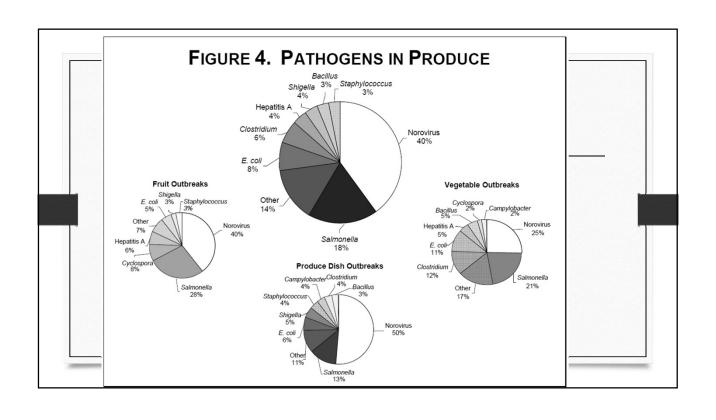
Virus de origem alimentar de maior importância

Norovirus (NoV)

- Principal causador de gastroenterite no mundo
- prevalência
 - Mundial
 - Causa pandemias similares a influenza
- Eliminado nas fezes e vômito
- Maioria dos surtos causados por manipuladores de alimentos
- Vegetais, alimentos prontos para consumo, frutos do mar crus

Hepatite A (HAV)

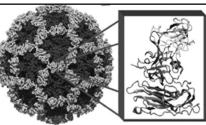

- · Eliminado nas fezes
- Fontes: Manipuladores, superfícies de contato e água


Hepatite E (HEV)

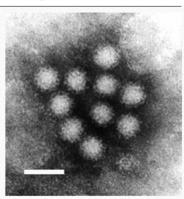
- Fezes humanas e de suinos (além do fígado)
- Epidemias associadas a ausencia de saneamento básico
- Transmissão zoonótica

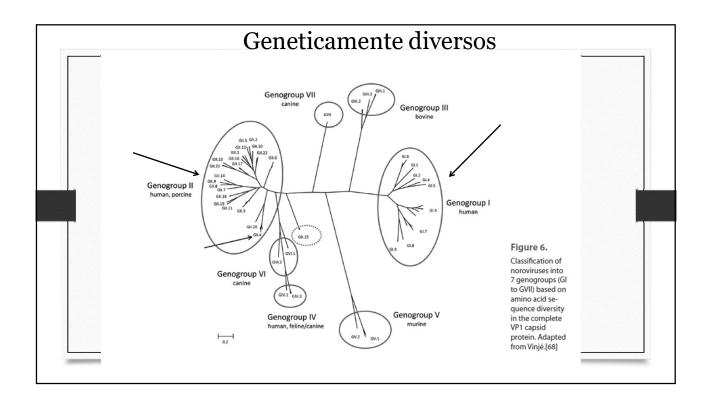
Norovirus

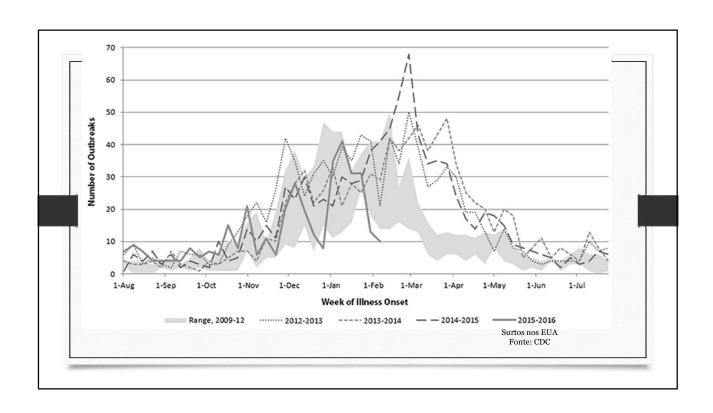
- Norwalk, OH
- 1968

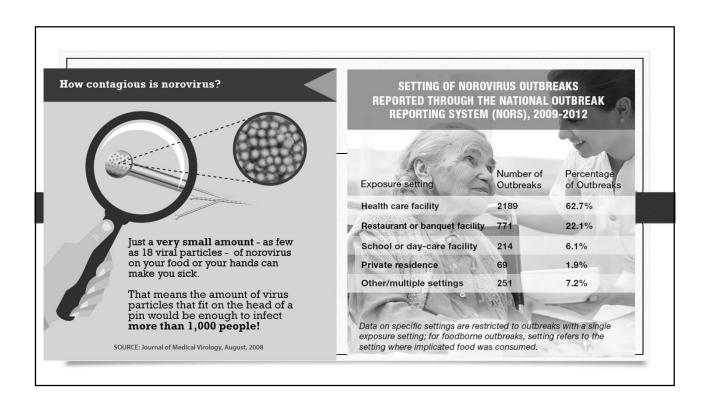

Infecção

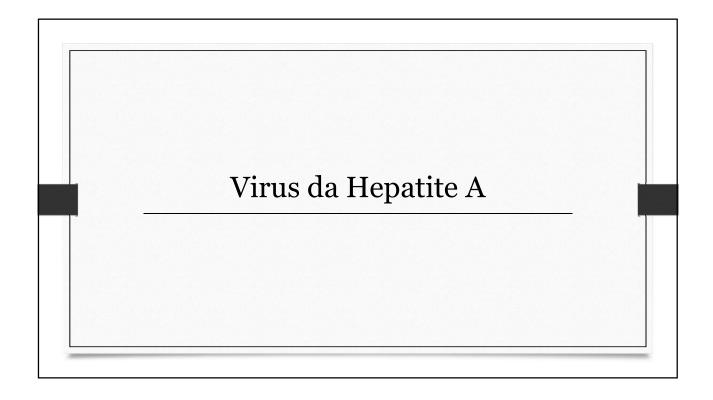
- Incubação 12-48 h
- Duração 6-60 hr
- Diarreia aquosa, vômitos, nauseas, dores abdominais, febre branda
- Doença autolimitada


Norovirus

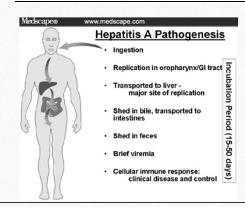

X-ray structure of the Norwalk virus capsid

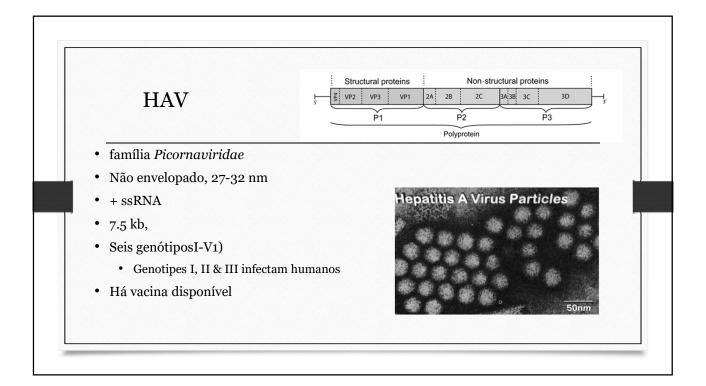


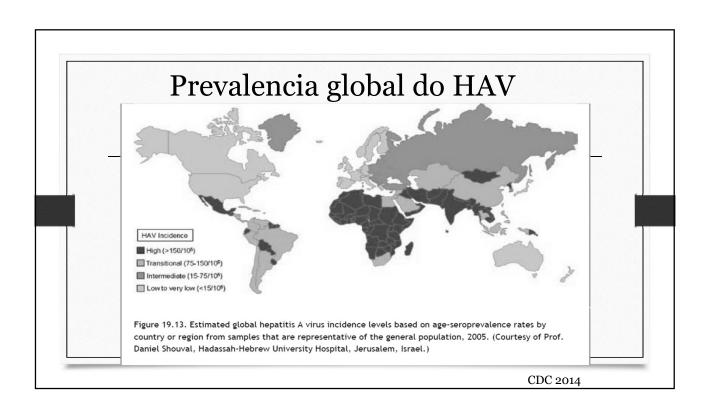

Detail of the VP1 subunit


- Família Caliciviridae
- não-envelopado, 27-35 nm (diâmetro)
- + ssRNA
- ~7.5 kb,
- Seis genogrupos
 - Dois infectam humanos
- Vários sorotipos
- Não há vacina

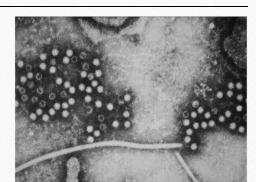


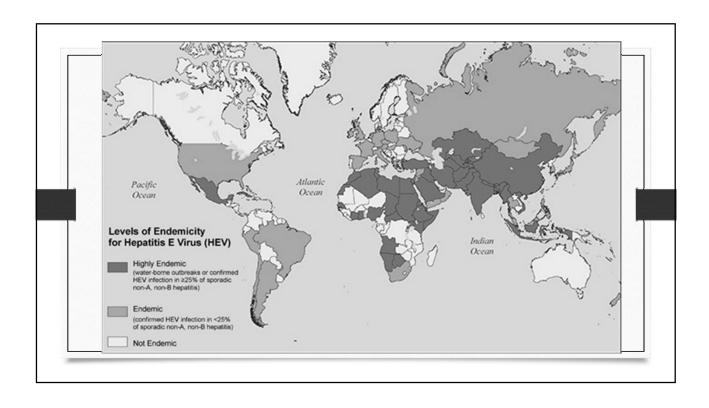


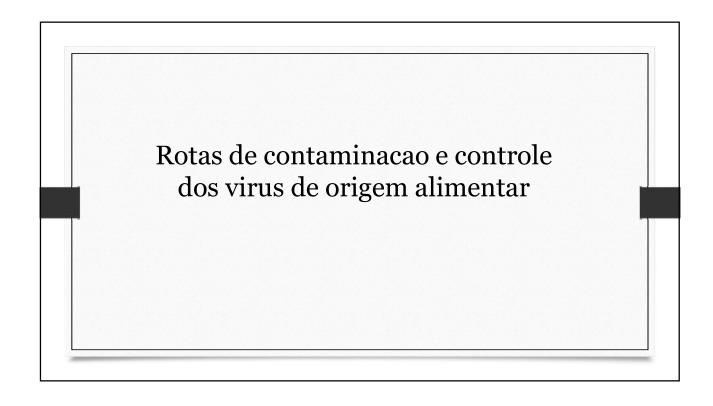


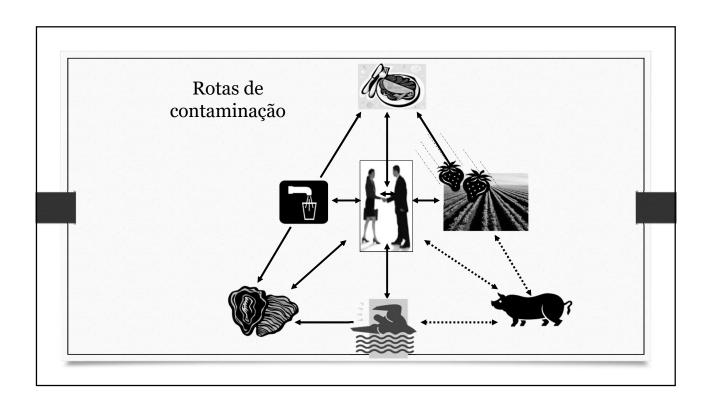

Hepatite A virus: (HAV)

- · Entra pelo trato GI
- · Replica no fígado
- Excretado nas fezes pela bile
- Sintomas em 2-6 semanas e duram por até 2 meses
- Inicialmente provoca febre, nauseas, vômitos, anorexia, fadiga e mal-estar
- Icterícia
 - Amarelamento da pele e olhos, fezes esbranquiçadas e urina escura




Hepatite E


- 32-34 nM
- ss(+) RNA
- · Familia Hepeviridae
- Período de incubação:
 - Média de 40 dias
 - Varia de 16 a 60 dias
- Mortalidade:
 - 1%-3%
 - Mulheres grávidas: aborto



Hepatite E Virus (HEV)

- Quatro genotipes (1-4)
 - HEV 1 & 2
 - Responsável por grandes epidemias veiculadas pela água
 - · Saneamento básico deficitário
 - HEV 3 & 4
 - Transmissão zoonótica de suínos para humanos
 - Consumo de carne crua ou mal passada

Manipuladores são responsáveis pela maioria dos surtos causados por virus em alimentos

- Virus são liberados em alto número
 - de 10⁶ a 10¹¹ partículas por g de vômito ou fezes
 - Liberação assintomática (1 dia a várias semanas)
- Dose infecciosa pode ser baixa (ex. ~20 partículas)
- Permanecem no ambiente (dias até meses)
- · Resistência moderada a desinfetantes
- Falta de proteção imunológica mesmo após exposição

Importância da higienização das mãos

- 10⁷ to 10⁹ particulas virais por grama de fezes
- Lavagem das mãos reduz transferência dos virus até 100 vezes

Resistência dos virus

- Alguns não tem envelope lipídico
- Tamanho pequeno (20-80 nm de diâmetro)
- · Tolerancia a
 - · Baixo pH
 - "sobrevivência em temperaturas de -80 até 60°C
 - Desecação, UV, cloração
- Podem sobreviver em água e alimentos (dias a meses)

Table 1 – Chlorine and chlorine dioxide inactivation of enteric viruses in buffered demand-free ground water,^a phosphate-buffered saline,^b and chlorine demand-free buffer.^c

	Virus	Treatment conditions					
Disinfectant		Disinfectant concentration (mg/L)	Time (min)	рН	Temp (°C)	Log ₁₀ inactivation	Reference
Chlorine	Adenovirus (AD40)	0.50 ^a	0.25	6.0	5	2.5	Thurston-Enriquez and others 2003
	Feline calicivirus (FCV)	0.50 ^a	0.25	6.0	5	4.3	Thurston-Enriquez and others 2003
		3000 ^a	10 30	7.0	22	>5	Duzier and others 2004
	Hepatitis A	5 ^b				5.63	Li and others 2002
		10 ^b				4.50	
		20 ^b	10	7.0	4	3.78	
		3	10	7.0	22	3.0	Vaughn and others 1987b
	Human norovirus	1.0 ^a	3	6	5	2.0	Shin and Sobsey 2008
	Murine norovirus (MNV)	2600 ^a	0.5 1 3	7.4	22	4.0	Belliot and others 2008
	MS2 phage	1.0 ^a	0.33	6	5	5	Shin and Sobsey 2008
	Poliovirus type 1	1.0 ^a	10	6.0	5	4.0	Shin and Sobsey 2008
	7,	5.0°	2.1 21.0	6 10	5	2.0	Engelbrecht and others 1980
Chlorine dioxide	Adenovirus (AD40)	0.48 ^a	0.25	8	15	>4.21	Thurston-Enriquez and others 2005
	Feline calicivirus (FCV)	0.90 ^a	0.75	8	5	3.6	Thurston-Enriquez and others 2005
		0.72 ^a	0.25		15	>4.15	
	Hepatitis A virus	5 ^b	10	7	4	3.99	Li and others 2004
	Poliovirus type 1	1.0°	2 5	6 10	25	1.0 4.0	Alvarez and O'Brien 1982
	Rotavirus (Human)	0.20 ^c	1.08	6	4	3.0	Chen and Vaughn 1990
		•	2	7			
			0.1	8			

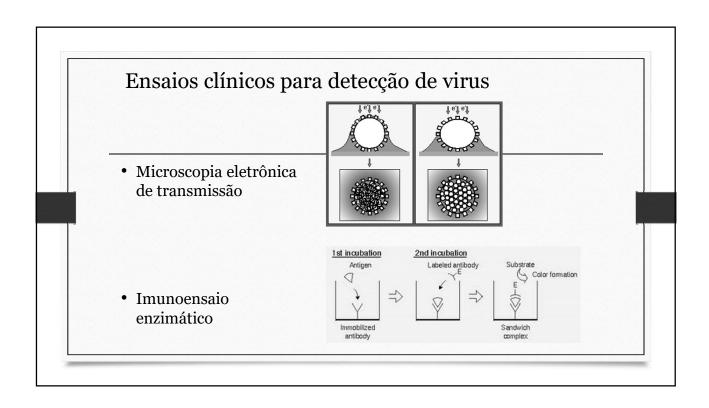
Mariscos

- Contaminação pode persistir em água e mariscos
- •Mariscos podem concentrar os virus
- •Não há indicadores confiáveis para a segurança desses produtos
- Frequentemente ingeridos crus ou levemente cozidos

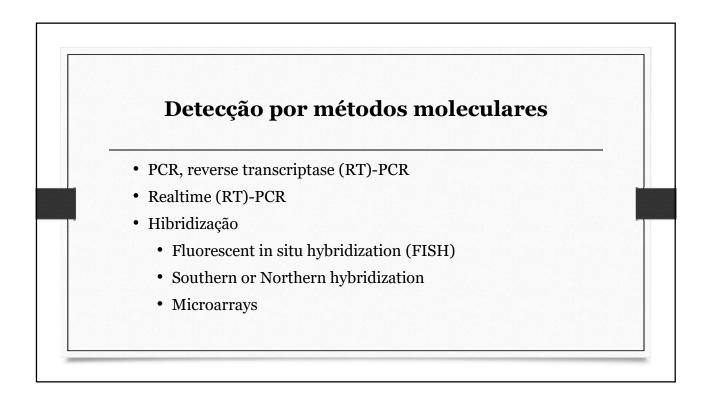
Estratégias de controle

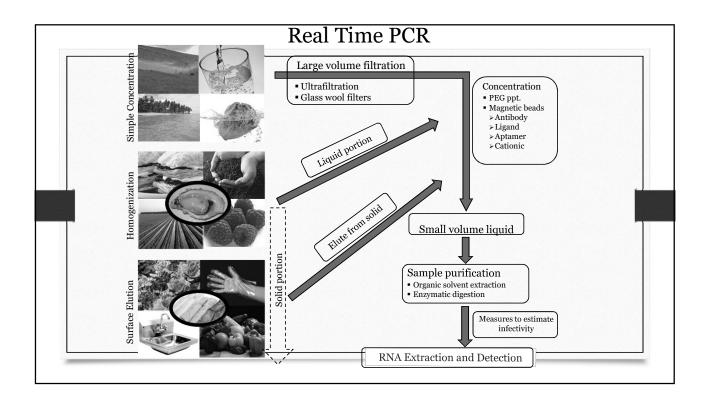
- ▶ manutenção da qualidade da água
 - ▶ Prevenir descarte de esgoto não tratado
 - ▶ Depuração: purificação dos animais em tanques com agua limpa por 2-3 dias

Estratégias pós-colheita


- Cozinhar a 100°C /2 min (temperatura interna de 90°C)
- uso de tratamentos de alta pressão
 - ▶ 450 MPa/5 minutes and 275 MPa/5 minutes para eliminação de virus da hepative A e norovirus

Recomendações do FDA


Ostras:


- ferver por 3 min;
- fritar a 180C por 3 min;
- assar a 230C por 10 min.

