Theorem of [Kolmogorov &] Cybenko:

. Kolmogorov:

Given any F of many variables X4, X,, X3, X, ... for example, the
complicated F = [x4.sin( X, ) + log( X3)] / X, + etc ... or any other F, the
following approximation can always be obtained ...

F (X4, X9, X3, X4 .... ) ~ linear combination and composition of a finite
(limited) number of functions g, (v) of just one variable v, and we can
have arbitrary precision in the approximation of F

. Cybenko: adapted Kolmogorov for the particular case in which the single
argument functions g, are approximated by a sum of sigmoidal functions
... he noticed that several sigmoids shifted and scaled properly can
approximate any g,(scalar argument)

Cybenko concluded that any arbitrary F CAN be
“implemented” by an ANN with sigmoidal nodes and just
1 hidden layer!!
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One of the first versions of the theorem was proved by George Cybenko in 1989 for sigmoid activation functions
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1. Introduction

A number of diverse application arcas are concerned with the representation of
gencral functions of an n-dimensional rea! variable, x & R", by finitc linear combina-
tions of the form

:is #a(yfx +6). [

where y, ¢ B"and . & R are fixed. (" s the transpose of y s0 that y7x i the inner
product of y and x.) Here the univariate function o depends heavily on the context
of the application. Our major concern is with so-called sigmoidal o's:

o)~ {;

chh functions arisc naturally in neural network theory as the activation function

) [L1], [RHM]. The main

mun of this pape is # demonstration of the fact that sums of the form (1) are dense
th

unitcube if o i

as t-s oo,
as - —oo.
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4. Results for Other Activation Functions

EIE]

bed arc quite powerful, we
that remain (o be answered
mmation {or equi

In this section we discuss other classes of activation functions that have

tion properties similar to the ones enjoyed by continuous sigmeidals. Since these
other examples are of somewhat Jess practical intercst, we only sketch the corre
spuﬂdmg proofs.

i i igmoidal functi h as hard
llmllcrs {o(x}y =1 for x 2 0 and o(x) = 0 for x < 0}, Discontinuous sigmaidal func-
tions are not used as often as continuous ones (because of the lack of good training
algorithms) but they are of theoretical interest because of their close relationship to
dlassical percepirons and Gamba networks [MP].

Assume that ¢ is a bounded, measurable sigmoidal function. We have an analog
of Theorem 2 that goes as follows:

Theorem 4. Let o be bounded measurable sigmoidal function. Then finite sums of
the form "

Gl = 3 aolyfx+6)
1

are dense in LM(L,). In other words, given any [ € L1} and ¢ > 0, there is a sum,
GUx), of the above form for which

16 = flie =J; 160~ )i dx < &
The proof follaws the proof of Theorems 1:and 2 with obvious changes such as
rctions that L™(L,)

is the dual of L'(1,). The nation of being discriminatory accordingly changes to the
fotlowing: for k & L=(1,) the condition that

f (7 + Ohx) dx = 0
.

for all yand @implies that h(x) = 0 almost everywhere. General sigmoidal functions
are discriminatory in this sense as already seen in Lemma | because measutes of
the form A(x) dx belong to M(1,).

Since convergence in LY implies convergence in measure [A], we have an analog
of Theorem 3 that goes as follows:

Theorem 5. Let o be a general sigmoidal function. Let f be the decision function
Jor any finite measurable partition of 1,. For any e > 0, there is a finite sum of the
Jorm:
5
G = ng &6{yTx +6)
andases D = 1,, 50 that m(D) > 1 ~ ¢ and

16— fll <e  Jor xeD.
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