
powerlaw: A Python Package for Analysis of Heavy-
Tailed Distributions
Jeff Alstott1,2*, Ed Bullmore2, Dietmar Plenz1

1 Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, Maryland, United States of America, 2 Brain Mapping Unit, Behavioural and Clinical

Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom

Abstract

Power laws are theoretically interesting probability distributions that are also frequently used to describe empirical data. In
recent years, effective statistical methods for fitting power laws have been developed, but appropriate use of these
techniques requires significant programming and statistical insight. In order to greatly decrease the barriers to using good
statistical methods for fitting power law distributions, we developed the powerlaw Python package. This software package
provides easy commands for basic fitting and statistical analysis of distributions. Notably, it also seeks to support a variety of
user needs by being exhaustive in the options available to the user. The source code is publicly available and easily
extensible.

Citation: Alstott J, Bullmore E, Plenz D (2014) powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions. PLoS ONE 9(1): e85777. doi:10.1371/
journal.pone.0085777

Editor: Fabio Rapallo, University of East Piedmont, Italy

Received September 5, 2013; Accepted December 6, 2013; Published January 29, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research was supported by the Intramural Research Program of the National Institute of MentalHealth. The Behavioural and Clinical Neuroscience
Institute, University of Cambridge, is supported by the Wellcome Trust and the Medical Research Council (UK). J.A. is supported by the National Institutes of
Health-Oxford-Cambridge Scholarship Program. E.B. is employed half-time by the University of Cambridge, UK, and half-time by GlaxoSmithKline (GSK). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors would also like to declare one
of the authors, Ed Bullmore, is employed half-time by GlaxoSmithKline (GSK), a commercial funder. This does not alter their adherence to all the PLOS ONE policies
on sharing data and materials.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: alstottjd@mail.nih.gov

Introduction

Power laws are probability distributions with the form:

p(x)!x{a ð1Þ

Power law probability distributions are theoretically interesting

due to being ‘‘heavy-tailed’’, meaning the right tails of the

distributions still contain a great deal of probability. This heavy-

tailedness can be so extreme that the standard deviation of the

distribution can be undefined (for av3), or even the mean (for

av2). These qualities make for a scale-free system, in which all

values are expected to occur, without a characteristic size or scale.

Power laws have been identified throughout nature, including in

astrophysics, linguistics, and neuroscience [1–4]. However, accu-

rately fitting a power law distribution to empirical data, as well as

measuring the goodness of that fit, is non-trivial. Furthermore,

empirical data from a given domain likely comes with domain-

specific considerations that should be incorporated into the

statistical analysis.

In recent years several statistical methods for evaluating power

law fits have been developed [5,6]. We here introduce and

describe powerlaw, a Python package for easy implementation of

these methods. The powerlaw package is an advance over

previously available software because of its ease of use, its

exhaustive support for a variety of probability distributions and

subtypes, and its extensibility and maintainability. The incorpo-

ration of numerous distribution types and fitting options is of

central importance, as appropriate fitting of a distribution to data

requires consideration of multiple aspects of the data, without

which fits will be inaccurate. The easy extensibility of the code

base also allows for future expansion of powerlaw’s capabilities,

particularly in the form of users adding new theoretical probability

distributions for analysis.

In this report we describe the structure and use of powerlaw.

Using powerlaw, we will give examples of fitting power laws and

other distributions to data, and give guidance on what factors and

fitting options to consider about the data when going through this

process.

Figure 1 shows the basic elements of visualizing, fitting, and

evaluating heavy-tailed distributions. Each component is described

in further detail in subsequent sections. Three example datasets

are included in Figure 1 and the powerlaw code examples below,

representing a good power law fit, a medium fit, and a poor fit,

respectively. The first, best fitting dataset is perhaps the best

known and solid of all power law distributions: the frequency of

word usage in the English language [2]. The specific data used is

the frequency of word usage in Herman Melville’s novel ‘‘Moby

Dick’’ [7]. The second, moderately fitting dataset is the number of

connections each neuron has in the nematode worm C. elegans

[8,9]. The last, poorly fitting data is the number of people in the

United States affected by electricity blackouts between 1984 and

2002 [7].

Figure 1A shows probability density functions of the three

example datasets. Figure 1B shows how only a portion of the

distribution’s tail may follow a power law. Figure 1C shows how

the goodness of the power law fit should be compared to other

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e85777

possible distributions, which may describe the data just as well or

better.

The powerlaw package will perform all of these steps

automatically. Below is an example of basic usage of powerlaw,

with explanation following. Using the populations affected by

blackouts:

. import powerlaw

. fit = powerlaw.Fit(data)

Calculating best minimal value for power law fit

. fit.power_law.alpha

2.273

. fit.power_law.sigma

0.167

. fit.distribution_compare(‘power_law’, ‘exponential’)

(12.755, 0.152)

An IPython Notebook and raw Python file of all examples is

included in Supporting Information.

The design of powerlaw includes object-oriented and functional

elements, both of which are available to the user. The object-

oriented approach requires the fewest lines of code to use, and is

shown here. The powerlaw package is organized around two types

of objects, Fit and Distribution. The Fit object (fit above) is a

wrapper around a dataset that creates a collection of Distribution

objects fitted to that dataset. A Distribution object is a maximum

likelihood fit to a specific distribution. In the above example, a

power law Distribution has been created automatically (power_

law), with the fitted a parameter alpha and its standard error

sigma. The Fit object is what the user mostly interacts with.

Basic Methods

Visualization
The powerlaw package supports easy plotting of the probability

density function (PDF), the cumulative distribution function (CDF;

p(Xvx)) and the complementary cumulative distribution function

(CCDF; p(X§x), also known as the survival function). The

Figure 1. Basic steps of analysis for heavy-tailed distributions: visualizing, fitting, and comparing. Example data for power law fitting
are a good fit (left column), medium fit (middle column) and poor fit (right column). Data and methods described in text. a) Visualizing data with
probability density functions. A typical histogram on linear axes (insets) is not helpful for visualizing heavy-tailed distributions. On log-log axes, using
logarithmically spaced bins is necessary to accurately represent data (blue line). Linearly spaced bins (red line) obscure the tail of the distribution (see
text). b) Fitting to the tail of the distribution. The best fit power law may only cover a portion of the distribution’s tail. Dotted green line: power law fit
starting at xmin = 1. Dashed green line: power law fit starting from the optimal xmin (see Basic Methods: Identifying the Scaling Range). c) Comparing
the goodness of fit. Once the best fit to a power law is established, comparison to other possible distributions is necessary. Dashed green line: power
law fit starting from the optimal xmin. Dashed red line: exponential fit starting from the same xmin.
doi:10.1371/journal.pone.0085777.g001

powerlaw

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e85777

calculations are done with the functions pdf, cdf, and ccdf, while

plotting commands are plot_pdf, plot_cdf, and plot_ccdf. Plotting

is performed with matplotlib (see Dependencies, below), and

powerlaw’s commands accept matplotlib keyword arguments.

Figure 1A visualizes PDFs of the example data.

. powerlaw.plot_pdf(data, color = ‘b’)

PDFs require binning of the data, and when presenting a PDF

on logarithmic axes the bins should have logarithmic spacing

(exponentially increasing widths). Although linear bins maintain a

high resolution over the entire value range, the greatly reduced

probability of observing large values in the distributions prevents a

reliable estimation of their probability of occurrence. This is

compensated for by using logarithmic bins, which increases the

likelihood of observing a range of values in the tail of the

distribution and normalizing appropriately for that increase in bin

width. Logarithmic binning is powerlaw’s default behavior, but

linearly spaced bins can also be dictated with the linear_bin-

s = True option. Figure 1A shows how the choice of logarithmic

over linear bins can greatly improve the visualization of the

distribution of the data. The blackouts data shows a particularly

severe example, in which the sparsity of the data leads individual

linear bins to have very few data points, including empty bins. The

larger logarithmic bins incorporate these empty regions of the data

to create a more useful visualization of the distribution’s behavior.

. powerlaw.plot_pdf(data, linear_bins = True, color = ‘r’)

As CDFs and CCDFs do not require binning considerations,

CCDFs are frequently preferred for visualizing a heavy-tailed

distribution. However, if the probability distribution has peaks in

the tail this will be more obvious when visualized as a PDF than as

a CDF or CCDF. PDFs and CDF/CCDFs also have different

behavior if there is an upper bound on the distribution (see

Identifying the Scaling Range, below).

Individual Fit objects also include functions for pdf, plot_pdf,

and their CDF and CCDF versions. The theoretical PDF, CDF,

and CCDFs of the constituent Distribution objects inside the Fit

can also be plotted. These are useful for visualizing just the portion

of the data using for fitting to the distribution (described below).

To send multiple plots to the same figure, pass the matplotlib axes

object with the keyword ax. Figure 2 shows the CCDF and PDF of

the neuron connections dataset and its power law fit. Note that a

CCDF scales at a{1, hence the shallower appearance.

. fig2 = fit.plot_pdf(color = ‘b’, linewidth = 2)

. fit.power_law.plot_pdf(color = ‘b’, linestyle = ‘–’, ax = fig2)

. fit.plot_ccdf(color = ‘r’, linewidth = 2, ax = fig2)

. fit.power_law.plot_ccdf(color = ‘r’, linestyle = ‘–’, ax = fig2)

PDF, CDF, and CCDF information are also available outside of

plotting. Fit objects return the probabilities of the fitted data and

either the sorted data (cdf) or the bin edges (pdf). Distribution

objects return just the probabilities of the data given. If no data is

given, all the fitted data is used.

. x, y = fit.cdf()

. bin_edges, probability = fit.pdf()

. y = fit.lognormal.cdf(data = [300, 350])

. y = fit.lognormal.pdf()

Identifying the Scaling Range
The first step of fitting a power law is to determine what portion

of the data to fit. A heavy-tailed distribution’s interesting feature is

the tail and its properties, so if the initial, small values of the data

do not follow a power law distribution the user may opt to

disregard them. The question is from what minimal value xmin the

scaling relationship of the power law begins. The methods of [5]

find this optimal value of xmin by creating a power law fit starting

from each unique value in the dataset, then selecting the one that

results in the minimal Kolmogorov-Smirnov distance, D, between

the data and the fit. If the user does not provide a value for xmin,

powerlaw calculates the optimal value when the Fit object is first

created.

As power laws are undefined for x~0, there must be some

minimum value. Thus, even if a given dataset brings with it

domain-specific reasoning that the data must follow a power law

across its whole range, the user must still dictate an xmin. This

could be a theoretical minimum, a noise threshold, or the

minimum value observed in the data. Figure 1B visualizes the

difference in fit between assigning xmin~1 and finding the optimal

xmin by minimizing D. The following powerlaw example uses the

blackout data:

. fit = powerlaw.Fit(data)

Calculating best minimal value for power law fit

. fit.xmin

230.000

. fit.fixed_xmin

False

. fit.power_law.alpha

2.273

. fit.power_law.D

0.061

. fit = powerlaw.Fit(data, xmin = 1.0)

. fit.xmin

1.0

. fit.fixed_xmin

True

. fit.power_law.alpha

1.220

. fit.power_law.D

0.376

The search for the optimal xmin can also be restricted to a range,

given as a tuple or list:

. fit = powerlaw.Fit(data, xmin = (250.0, 300.0))

Calculating best minimal value for power law fit

. fit.fixed_xmin

False

. fit.given_xmin

(250.000, 300.000)

. fit.xmin

272.0

In some domains there may also be an expectation that the

distribution will have a precise upper bound, xmax. An upper limit

could be due a theoretical limit beyond which the data simply

cannot go (ex. in astrophysics, a distribution of speeds could have

an upper bound at the speed of light). An upper limit could also be

due to finite-size scaling, in which the observed data comes from a

small subsection of a larger system. The finite size of the

observation window would mean that individual data points could

be no larger than the window, xmax, though the greater system

powerlaw

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e85777

would have larger, unobserved data (ex. in neuroscience,

recording from a patch of cortex vs the whole brain). Finite-size

effects can be tested by experimentally varying the size of the

observation window (and xmax) and determining if the data still

follows a power law with the new xmax [3,4]. The presence of an

upper bound relies on the nature of the data and the context in

which it was collected, and so can only be dictated by the user.

Any data above xmax is ignored for fitting.

. fit = powerlaw.Fit(data, xmax = 10000.0)

Calculating best minimal value for power law fit

. fit.xmax

10000.0

. fit.fixed_xmax

True

For calculating or plotting CDFs, CCDFs, and PDFs, by default

Fit objects only use data above xmin and below xmax (if present).

The Fit object’s plotting commands can plot all the data originally

given to it with the keyword original_data = True. The constituent

Distribution objects are only defined within the range of xmin and

Figure 2. Probability density function (p(X), blue) and complemenatary cumulative distribution function (p(X§x), red) of word
frequencies from ‘‘Moby Dick’’.
doi:10.1371/journal.pone.0085777.g002

Figure 3. Complemenatary cumulative distribution functions of the empirical word frequency data and fitted power law
distribution, with and without an upper limit xmax.
doi:10.1371/journal.pone.0085777.g003

powerlaw

PLOS ONE | www.plosone.org 4 January 2014 | Volume 9 | Issue 1 | e85777

xmax, but can plot any subset of that range by passing specific data

with the keyword data.

When using an xmax, a power law’s CDF and CCDF do not

appear in a straight line on a log-log plot, but bend down as the

xmax is approached (Figure 3). The PDF, in contrast, appears

straight all way to xmax. Because of this difference PDFs are

preferrable when visualing data with an xmax, so as to not obscure

the scaling.

Continuous vs. Discrete Data
Datasets are treated as continuous by default, and thus fit to

continuous forms of power laws and other distributions. Many

data are discrete, however. Discrete versions of probability

distributions cannot be accurately fitted with continuous versions

[5]. Discrete (integer) distributions, with proper normalizing, can

be dictated at initialization:

. fit = powerlaw.Fit(data, xmin = 230.0)

. fit.discrete

False

. fit = powerlaw.Fit(data, xmin = 230.0, discrete = True)

. fit.discrete

True

Discrete forms of probability distributions are frequently more

difficult to calculate than continuous forms, and so certain

computations may be slower. However, there are faster estima-

tions for some of these calculations. Such opportunities to estimate

discrete probability distributions for a computational speed up are

described in later sections.

Comparing Candidate Distributions

From the created Fit object the user can readily access all the

statistical analyses necessary for evaluation of a heavy-tailed

distribution. Within the Fit object are individual Distribution

objects for different possible distributions. Each Distribution has

the best fit parameters for that distribution (calculated when

called), accessible both by the parameter’s name or the more

generic ‘‘parameter1’’. Using the blackout data:

. fit.power_law

,powerlaw.Power_Law at 0x301b7d0.

. fit.power_law.alpha

2.273

. fit.power_law.parameter1

2.273

. fit.power_law.parameter1_name

. fit.lognormal.mu

0.154

. fit.lognormal.parameter1_name

‘mu’

. fit.lognormal.parameter2_name

‘sigma’

. fit.lognormal.parameter3_name = = None

True

The goodness of fit of these distributions must be evaluated

before concluding that a power law is a good description of the

data. The goodness of fit for each distribution can be considered

individually or by comparison to the fit of other distributions

(respectively, using bootstrapping and the Kolmogorov-Smirnov

test to generate a p-value for an individual fit vs. using

loglikelihood ratios to identify which of two fits is better) [5].

There are several reasons, both practical and philosophical, to

focus on the latter, comparative tests.

Practically, bootstrapping is more computationally intensive and

loglikelihood ratio tests are faster. Philosophically, it is frequently

insufficient and unnecessary to answer the question of whether a

distribution ‘‘really’’ follows a power law. Instead the question is

whether a power law is the best description available. In such a

case, the knowledge that a bootstrapping test has passed is

insufficient; bootstrapping could indeed find that a power law

distribution would produce a given dataset with sufficient

likelihood, but a comparative test could identify that a lognormal

fit could have produced it with even greater likelihood. On the

other hand, the knowledge that a bootstrapping test has failed may

be unnecessary; real world systems have noise, and so few

empirical phenomena could be expected to follow a power law

with the perfection of a theoretical distribution. Given enough

data, an empirical dataset with any noise or imperfections will

always fail a bootstrapping test for any theoretical distribution. If

one keeps absolute adherence to the exact theoretical distribution,

one can enter the tricky position of passing a bootstrapping test,

but only with few enough data [6].

Thus, it is generally more sound and useful to compare the fits

of many candidate distributions, and identify which one fits the

best. Figure 1C visualizes the differences in fit between power law

and exponential distribution. The goodness of these distribution

fits can be compared with distribution_compare. Again using the

blackout data:

. R, p = fit.distribution_compare(‘power_law’, ‘exponential’,

normalized_ratio = True)

. print R, p

1.431 0.152

R is the loglikelihood ratio between the two candidate

distributions. This number will be positive if the data is more

likely in the first distribution, and negative if the data is more likely

in the second distribution. The significance value for that direction

is p. The normalized_ratio option normalizes R by its standard

deviation, R=(s
ffiffiffi

n
p

). The normalized ratio is what is directly used

to calculate p.

The exponential distribution is the absolute minimum alterna-

tive candidate for evaluating the heavy-tailedness of the distribu-

tion. The reason is definitional: the typical quantitative definition

of a ‘‘heavy-tail’’ is that it is not exponentially bounded [10]. Thus

if a power law is not a better fit than an exponential distribution (as

in the above example) there is scarce ground for considering the

distribution to be heavy-tailed at all, let alone a power law.

However, the exponential distribution is, again, only the

minimum alternative candidate distribution to consider when

describing a probability distribution. The fit object contains a list

of supported distributions in fit.supported_distributions. Any of

these distribution names can be used by distribution_compare.

Users who want to test unsupported distributions can write them

into powerlaw in a straightforward manner described in the source

code. Among the supported distributions is the exponentially

truncated power law, which has the power law’s scaling behavior

over some range but is truncated by an exponentially bounded tail.

There are also many other heavy-tailed distributions that are not

power laws, such as the lognormal or the stretched exponential

(Weibull) distributions. Given the infinite number of possible

candidate distributions, one can again run into a problem similar

to that faced by bootstrapping: There will always be another

distribution that fits the data better, until one arrives at a

distribution that describes only the exact values and frequencies

powerlaw

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e85777

observed in the dataset (overfitting). Indeed, this process of

overfitting can begin even with very simple distributions; while the

power law has only one parameter to serve as a degree of freedom

for fitting, the truncated power law and the alternative heavy-

tailed distributions have two parameters, and thus a fitting

advantage. The overfitting scenario can be avoided by incorpo-

rating generative mechanisms into the candidate distribution

selection process.

Generative Mechanisms
The observed data always come from a particular domain, and

in that domain generative mechanisms created the observed data.

If there is a plausible domain-specific mechanism for creating the

data that would yield a particular candidate distribution, then that

candidate distribution should be considered for fitting. If there is

no such hypothesis for how a candidate distribution could

be created there is much less reason to use it to describe the

dataset.

As an example, the number of connections per neuron in the

nematode worm C. elegans has an apparently heavy-tailed

distribution (Figure 1, middle column). A frequently proposed

mechanism for creating power law distributions is preferential

attachment, a growth model in which ‘‘the rich get richer’’. In this

domain of C. elegans, neurons with large number of connections

could plausibly gain even more connections as the organism

grows, while neurons with few connections would have difficulty

getting more. Preferential attachment mechanisms produce power

laws, and indeed the power law is a better fit than the exponential:

. fit.distribution_compare(‘power_law’, ‘exponential’)

(16.384, 0.024)

However, the worm has a finite size and a limited number of

neurons to connect to, so the rich cannot get richer forever. There

could be a gradual upper bounding effect on the scaling of the

power law. An exponentially truncated power law could reflect this

bounding. To test this hypothesis we compare the power law and

the truncated power law:

. fit.distribution_compare(‘power_law’, ‘truncated_power_law’)

Assuming nested distributions

(-0.081, 0.687)

In fact, neither distribution is a significantly stronger fit (pw:05).

From this we can conclude only moderate support for a power

law, without ruling out the possibility of exponential truncation.

The importance of considering generative mechanisms is even

greater when examining other heavy-tailed distributions. Perhaps

the simplest generative mechanism is the accumulation of

independent random variables, the central limit theorem. When

random variables are summed, the result is the normal distribu-

tion. However, when positive random variables are multiplied, the

result is the lognormal distribution, which is quite heavy-tailed. If

the generative mechanism for the lognormal is plausible for the

domain, the lognormal is frequently just as good a fit as the power

law, if not better. Figure 4 illustrates how the word frequency data

is equally well fit by a lognormal distribution as by a power law

(pw:05):

. fit.distribution_compare(‘power_law’, ‘lognormal’)

(0.928, 0.426)

. fig4 = fit.plot_ccdf(linewidth = 3)

. fit.power_law.plot_ccdf(ax = fig4, color = ‘r’, linestyle = ‘–’)

. fit.lognormal.plot_ccdf(ax = fig4, color = ‘g’, linestyle = ‘–’)

There are domains in which the power law distribution is a

superior fit to the lognormal (ex. [6]). However, difficulties in

distinguishing the power law from the lognormal are common and

well-described, and similar issues apply to the stretched exponen-

tial and other heavy-tailed distributions [11–13]. If faced with such

difficulties it is important to remember the basic principles of

hypothesis and experiment: Domain-specific generative mecha-

nisms provide a basis for deciding which heavy-tailed distributions

to consider as a hypothesis fit. Once candidates are identified, if

the loglikelihood ratio test cannot distinguish between them the

Figure 4. Complemenatary cumulative distribution functions of word frequency data and fitted power law and lognormal
distributions.
doi:10.1371/journal.pone.0085777.g004

powerlaw

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e85777

strongest solution is to construct an experiment to identify what

generative mechanisms are at play.

Creating Simulated Data

Creating simulated data drawn from a theoretical distribution is

frequently useful for a variety of tasks, such as modeling.

Individual Distribution objects can generate random data points

with the function generate_random. These Distribution objects

can be called from a Fit object or created manually.

. fit = powerlaw.Fit(empirical_data)

. simulated_data = fit.power_law.generate_random(10000)

. theoretical_distribution = powerlaw.Power_Law(xmin = 5.0,

parameters = [2.5])

. simulated_data = theoretical_distribution.generate_random(10000)

Such simulated data can then be fit again, to validate the

accuracy of fitting software such as powerlaw:

. fit = powerlaw.Fit(simulated_data)

Calculating best minimal value for power law fit

. fit.power_law.xmin, fit.power_law.alpha

(5.30, 2.50)

Validations of powerlaw’s fitting of a and xmin are shown on

simulated power law data for a variety of parameter values in

Figure S1.

Advanced Considerations

Discrete Distribution Calculation and Estimation
While the maximum likelihood fit to a continous power law for

a given xmin can be calculated analytically, and thus the optimal

xmin and resulting fitted parameters can be computed quickly, this

is not so for the discrete case. The maximum likelihood fit for a

discrete power law is found by numerical optimization, the

computation of which for every possible value of xmin can take

time. To circumvent this issue, powerlaw can use an analytic

estimate of a, from [5], which can ‘‘give results accurate to about

1% or better provided xmin§6’’ when not using an xmax. This

estimate_discrete option is True by default. Returning to the

blackouts data:

. fit = powerlaw.Fit(data, discrete = True, estimate_discrete =

True)

Calculating best minimal value for power law fit

. fit.power_law.alpha

2.26912

. fit.power_law.estimate_discrete

True

. fit = powerlaw.Fit(data, discrete = True, estimate_discrete =

False)

Calculating best minimal value for power law fit

. fit.power_law.alpha

2.26914

. fit.power_law.estimate_discrete

False

Additionally, the discrete forms of some distributions are not

analytically defined (ex. lognormal and stretched exponential).

There are two available approximations of the discrete form. The

first is discretization by brute force. The probabilities for all the

discrete values between xmin and a large upper limit are calculated

with the continuous form of the distribution. Then the probabil-

ities are normalized by their sum. The upper limit can be set to a

specific value, or xmax, if present. The second approximation

method is discretization by rounding, in which the continuous

distribution is summed to the nearest integer. In this case, the

probability mass at x is equal to the sum of the continuous

probability between x{0:5 through xz0:5. Because of its speed,

this rounding method is the default.

. fit=powerlaw.Fit(data, discrete=True, xmin=230.0, xmax=9000,

discrete_approximation=xmax’)

. fit.lognormal.mu

244.19

. fit = powerlaw.Fit(data, discrete_approximation = 100000,

xmin = 230.0, discrete = True)

. fit.lognormal.mu

0.28

. fit = powerlaw.Fit(data, discrete_approximation = ‘round’,

xmin = 230.0, discrete = True)

. fit.lognormal.mu

0.40

Generation of simulated data from a theoretical distribution has

similar considerations for speed and accuracy. There is no rapid,

exact calculation method for random data from discrete power law

distributions. Generated data can be calculated with a fast

approximation or with an exact search algorithm that can run

several times slower [5]. The two options are again selected with

the estimate_discrete keyword, when the data is created with

generate_random.

. theoretical_distribution = powerlaw.Power_Law(xmin = 5.0,

parameters = [2.5], discrete = True)

. simulated_data = theoretical_distribution.generate_random(10000,

estimate_discrete = True)

If the decision to use an estimation is not explictly assigned

when calling generate_random, the default behavior is to use the

behavior used in the Distribution object generating the data,

which may have been created by the user or created inside a Fit

object.

. theoretical_distribution = powerlaw.Power_Law(xmin = 5.0,

parameters = [2.5], discrete = True, estimate_discrete = False)

. simulated_data=theoretical_distribution.generate_random(10000)

. fit = powerlaw.Fit(empirical_data, discrete = True, estimate_

discrete = True)

Calculating best minimal value for power law fit

. simulated_data = fit.power_law.generate_random(10000)

The fast estimation of random data has an error that scales with

the xmin. When xmin~1 the error is over 8%, but at xmin~5 the

error is less than 1% and at xmin~10 less than .2% [5]. Thus, for

distributions with small values of xmin the exact calculation is likely

preferred.

Random data generation methods for discrete versions of other,

non-power law distributions all presently use the slower, exact

search algorithm. Estimates of rapid, exact calculations for other

distributions can later be implemented by users as they are

developed, as described below.

powerlaw

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e85777

Nested Distributions
Comparing the likelihoods of distributions that are nested

versions of each other requires a particular calculation for the

resulting p-value [5]. Whether the distributions are nested versions

of each other can be dictated with the nested keyword. If this

keyword is not used, however, powerlaw automatically detects

when one candidate distribution is a nested version of the other by

using the names of the distributions as a guide. The appropriate

corrections to the calculation of the p-value are then made. This is

most relevant for comparing power laws to exponentially

truncated power laws, but is also the case for exponentials to

stretched exponentials (also known as Weibull distributions).

. fit.distribution_compare(‘power_law’, ‘truncated_power_law’)

Assuming nested distributions

(20.3818, 0.3821)

. fit.distribution_compare(‘exponential’, ‘stretched_exponential’)

Assuming nested distributions

(213.0240, 3.3303e-07)

Restricted Parameter Range
Each Distribution has default restrictions on the range of its

parameters may take (ex. aw1 for power laws, and lw0 for

exponentials). The user may also provide customized parameter

ranges. A basic option is the keyword sigma_threshold (default

None), which restricts xmin selection to those that yield a s below

the threshold.

. fit = powerlaw.Fit(data)

Calculating best minimal value for power law fit

. fit.power_law.alpha, fit.power_law.sigma, fit.xmin

(2.27, 0.17, 230.00)

. fit = powerlaw.Fit(data, sigma_threshold = .1)

Calculating best minimal value for power law fit

. fit.power_law.alpha, fit.power_law.sigma, fit.xmin

(1.78, 0.06, 50.00)

More extensive parameter ranges can be set with the keyword

parameter_range, which accepts a dictionary of parameter names

and a tuple of their lower and upper bounds. Instead of operating

as selections on xmin values, these parameter ranges restrict the fits

considered for a given xmin.

. parameter_range = {‘alpha’: [2.3, None], ‘sigma’: [None, .2]}

. fit = powerlaw.Fit(data, parameter_range = parameter_range)

Calculating best minimal value for power law fit

. fit.power_law.alpha, fit.power_law.sigma, fit.xmin

(2.30, 0.17, 234.00)

Even more complex parameter ranges can be defined by instead

passing parameter_range a function, to do arbitrary calculations

on the parameters. To incorporate the custom parameter range in

the optimizing of xmin the power law parameter range should be

defined at initalization of the Fit.

. parameter_range = lambda(self): self.sigma/self.alpha ,.05

. fit = powerlaw.Fit(data, parameter_range = parameter_range)

Calculating best minimal value for power law fit

. fit.power_law.alpha, fit.power_law.sigma, fit.xmin

(1.88, 0.09, 124.00)

The other constituent Distribution objects can be individually

given a new parameter range afterward with the parameter_range

function, as shown later.

Multiple Possible Fits
Changes in xmin with different parameter requirements illustrate

that there may be more than one fit to consider. Assuming there is

no xmax, the optimal xmin is selected by finding the xmin value with

the lowest Kolmogorov-Smirnov distance, D, between the data and

the fit for that xmin value. If D has only one local minimum across all

xmin values, this is philosophically simple. If, however, there are

multiple local minima for D across xmin with similar D values, it may

be worth noting and considering these alternative fits. For this

purpose, the Fit object retains information on all the xmins

considered, along with their Ds, alphas, and sigmas. Returning to

the data of population size affect by blackouts, Figure 5 shows there

are actually two values of xmin with a local minima of D, and they

yield different a values. The first is at xmin~50, and has a D value of

.1 and an a value of 1.78. The second, the more optimal fit, is

xmin~230, with a D of .06 and a of 2.27.

. from matplotlib.pylab import plot

. plot(fit.xmins, fit.Ds)

. plot(fit.xmins, fit.sigmas)

. plot(fit.xmins, fit.sigmas/fit.alphas)

The second minima may seem obviously optimal. However, s
increases nearly monotonically throughout the range of xmin. If the

user had included a parameter fitting requirement on s, such as

sigma_threshold = .1, then the second, lower D value fit from

xmin~230 would not be considered. Even a more nuanced

parameter requirement, such as s=av:05, would exclude the

second minimum. Which of the two fits from the two xmin values is

more appropriate may require domain-specific considerations.

No Possible Fits
When fitting a distribution to data, there may be no valid fits.

This would most typically arise from user-specified requirements,

like a maximum threshold on s, set with sigma_threshold. There

may not be a single value for xmin for which s is below the

threshold. If this occurs, the threshold requirement will be ignored

and the best xmin selected. The Fit object’s attribute noise_flag will

be set to True.

. fit = powerlaw.Fit(data, sigma_threshold = .001)

No valid fits found.

. fit.power_law.alpha, fit.power_law.sigma, fit.xmin, fit.noise_

flag

(2.27, 0.17, 230.00, True)

User-specified parameter limits can also create calculation

difficulties with other distributions. Most other distributions are

determined numerically through searching the parameter space

from an initial guess. The initial guess is calculated from the data

using information about the distribution’s form. If an extreme

parameter range very far from the optimal fit with a standard

parameter range is required, the initial guess may be too far away

and the numerical search will not be able to find the solution. In

such a case the initial guess will be returned and the noise_flag

attribute will also be set to True. This difficulty can be overcome

by also providing a set of initial parameters to search from, namely

within the user-provided, extreme parameter range.

powerlaw

PLOS ONE | www.plosone.org 8 January 2014 | Volume 9 | Issue 1 | e85777

. fit.lognormal.mu, fit.lognormal.sigma

(0.15, 2.30)

. range_dict = {‘mu’: [11.0, None]}

. fit.lognormal.parameter_range(range_dict)

No valid fits found.

. fit.lognormal.mu, fit.lognormal.sigma, fit.lognormal.noise_flag

(6.22, 0.72, True)

. initial_parameters = (12, .7)

. fit.lognormal.parameter_range(range_dict, initial_parameters)

. fit.lognormal.mu, fit.lognormal.sigma, fit.lognormal.noise_flag

(11.00, 5.72, False)

Maximum Likelihood and Independence Assumptions
A fundamental assumption of the maximum likelihood method

used for fitting, as well as the loglikelihood ratio test for comparing

the goodness of fit of different distributions, is that individual data

points are independent [5]. In some datasets, correlations between

observations may be known or expected. For example, in a

geographic dataset of the elevations of peaks, of the observation of

a mountain of height X could be correlated with the observation

of foothills nearby of height X=10. Large correlations can

potentially greatly alter the quality of the maximum likelihood

fit. Theoretically, such correlations may be incorporated into the

likelihood calculations, but doing so would greatly increase the

computational requirements for fitting.

Depending on the nature of the correlation, some datasets can be

‘‘decorrelated’’ by selectively ommitting portions of the data [6].

Using the foothills example, the correlated foothills may be known

to occurr within 10 km of a mountain, and beyond 10 km the

correlations drops to 0. Requiring a minimum distance of 10 km

between observations of peaks, and ommitting any additional

observations within that distance, would decorrelate the dataset.

An alternative to maximum likelihood estimation is minimum

distance estimation, which fits the theoretical distribution to the

data by minimizing the Kolmogorov-Smirnov distance between

the data and the fit. This can be accomplished in the Fit object by

using the keyword argument fit_method = ‘KS’ at initialization.

However, the use of this option will not solve the problem of

correlated data points for the loglikelihood ratio tests used in

distribution_compare.

Selecting xmin with Other Distance Metrics
The optimal xmin is defined as the value that minimizes the

Kolmogorov-Smirnov distance, D, between the empirical data and

the fitted power law. This distance D, however, is notably

insensitive to differences at the tails of the distributions, which is

where most of a power law’s interesting behavior occurs. It may be

desirable to use other metrics, such as Kuiper or Anderson-

Darling, which give additional weight to the tails when measuring

the distance between distributions. In practice, the Kuiper distance

V does not perform notably better than the Kolmogorov-Smirnov

distance [5]. The Anderson-Darling distance A2 is actually so

conservative that it can cut off too much of the data, leaving too

few data points for a good fit [5], though this may not be a concern

for very large datasets that have a great many data points in the

tail. If desired, powerlaw supports selecting xmin with these other

distances, as called by the xmin_distance keyword (default ‘D’):

. fit = powerlaw.Fit(data, xmin_distance = ‘D’)

. fit = powerlaw.Fit(data, xmin_distance = ‘V’)

. fit = powerlaw.Fit(data, xmin_distance = ‘Asquare’)

Figure 5. Example of multiple local minima of Kolmogorov-Smirnov distance D across xmin. As a power law is fitted to data starting from
different xmin, the goodness of fit between the power law and the data is measured by the Kolmogorov-Smirnov distance D, with the best xmin

minimizing this distance. Here fitted data is the population sizes affected by blackouts. While there exists a clear absolute minima for D at 230, and
thus 230 is the optimal xmin additional restrictions could exclude this fit. Parameter requirements such as sv:1 or s=av:05 would restrict the xmin

values considered, leading to the identification of a different, smaller xmin at 50.
doi:10.1371/journal.pone.0085777.g005

powerlaw

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e85777

The powerlaw Software

Availability and Installation
Source code and Windows installers of powerlaw are available

from the Python Package Index, PyPI, at https://pypi.python.

org/pypi/powerlaw. It can be readily installed with pip:

pip install powerlaw

Source code is also available on GitHub at https://github.com/

jeffalstott/powerlaw and Google Code at https://code.google.

com/p/powerlaw/.

Dependencies
The powerlaw Python package is implemented solely in Python,

and requires the packages NumPy, SciPy, matplotlib, and

mpmath. NumPy, SciPy and matplotlib are very popular and

stable open source Python packages useful for a wide variety of

scientific programming needs. SciPy development is supported by

Enthought, Inc. and all three are included in the Enthought

Python Distribution. Mpmath is required only for the calculation

of gamma functions in fitting to the gamma distribution and the

discrete form of the exponentially truncated power law. If the user

does not attempt fits to the distributions that use gamma functions,

mpmath will not be required. The gamma function calculations in

SciPy are not numerically accurate for negative numbers. If and

when SciPy’s implementations of the gamma, gammainc, and

gammaincc functions becomes accurate for negative numbers,

dependence on mpmath may be removed.

The Utility and Future of powerlaw

There have been other freely-available software for fitting

heavy-tailed distributions [5,14]. Here we describe differences

between these packages’ design and features and those of

powerlaw.

As described in this paper, fitting heavy-tailed distributions

involves several complex algorithms, and keeping track of

numerous options and features of the fitted data set. powerlaw

uses an integrated system of Fit and Distribution objects so that the

user needs to interact with only a few lines of code to perform the

full analysis pipeline. In other software this integration does not

exist, and requires much more elaborate code writing by the user

in order to analyze a dataset completely.

In fitting data there are multiple families of distributions that the

user may need or wish to consider: power law, exponential,

lognormal, etc. And there are different flavors within each family:

discrete vs. continuous, with or without an xmax, etc. powerlaw is

currently unique in building in support for numerous distribution

families and all the flavors within each one. And because of the

integrated system, users do not need to do anything special or

complicated to access any of the supported distributions. No

other software package currently offers support for the same

depth and breadth of probability distributions and subtypes as

powerlaw.

Lastly, much existing software was not written for code

maintenance or expansion. The code architecture of powerlaw

was designed for easy navigation, maintenance and extensibility.

As the source code is maintained in a git repository on GitHub, it

is straightforward for users to submit issues, fork the code, and

write patches. The most obvious extensions users may wish to

write are additional candidate distributions for fitting to the data

and comparing to a power law fit. All distributions are simple

subclasses of the Distribution class, and so writing additional

custom distributions requires only a few lines of code. Already

users have submitted suggestions and written improvements to

certain distributions, which were able to slot in seamlessly due to

modularly-organized code. Such contributions will continue to be

added to powerlaw in future versions.

Supporting Information

Code S1 powerlaw code. This version was used for all figures

and examples. Future updates will be on the Python Package

Index, Github and Google Code.

(PY)

Code S2 Python code to make all figures.

(PY)

Code S3 Python code to make all figures, as IPython
Notebook.

(IPYNB)

Figure S1 Validation of fitting accuracy on simulated
data with different values of a and xmin. Each fit is the

average of 10 simulated datasets of 10,000 data points each.

Shading is the standard deviation of the 10 simulations. Note that

on these simulated data there exist no data smaller than the true

xmin from which to sample, so any statistical fluctuation in the

estimation of xmin must return a value larger than the true value.

The black dashed line on the bottom panels is the boundary where

the fitted xmin is equal to the actual xmin, below which fits cannot

be made. For datasets in which there are noisy data below the xmin

of the power law, these methods recover the xmin even more

accurately, as shown in [5].

(TIFF)

Acknowledgments

The authors would like to thank Andreas Klaus, Mika Rubinov and Shan

Yu for helpful discussions. The authors also thank Andreas Klaus and the

authors of [5] and [14] for sharing their code for power law fitting. Their

implementations were a critical starting point for making powerlaw.

Author Contributions

Conceived and designed the experiments: JA EB DP. Performed the

experiments: JA. Analyzed the data: JA. Wrote the paper: JA, EB, DP.

References

1. Michel M, Kirk H, Myers PC (2011) Mass Distributions of Stars and Cores in

Young Groups and Clusters. The Astrophysical Journal 735: 51.

2. Zipf GK (1935) Psycho-Biology of Languages: An Introduction to Dynamic

Philology. Boston: Houghton-Mifflin.

3. Beggs JM, Plenz D (2003) Neuronal Avalanches in Neocortical Circuits. The

Journal of Neuro-science 23: 11167–11177.

4. Shriki O, Alstott J, Carver F, Holroyd T, Henson R, et al. (2013) Neuronal

Avalanches in the Resting MEG of the Human Brain. Journal of Neuroscience

33: 7079–7090.

5. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in

empirical data. SIAM Review 51.

6. Klaus A, Yu S, Plenz D (2011) Statistical analyses support power law

distributions found in neuronal avalanches. PloS one 6: e19779.

7. Newman MEJ (2005) Power laws, Pareto distributions and Zipfs law 46.

8. Towlson EK, Vertes PE, Ahnert SE, Schafer WR, Bullmore ET (2013) The

Rich Club of the C. elegans Neuronal Connectome. Journal of Neuroscience 33:

6380–6387.

9. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural

properties of the Caenorhabditis elegans neuronal network. PLoS Computa-

tional Biology 7: e1001066.

10. Asmussen Sr (2003) Applied probability and queues. Berlin: Springer.

powerlaw

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e85777

11. Malevergne Y, Pisarenko V, Sornette D (2009) Gibrat’s law for cities: uniformly

most powerful unbiased test of the Pareto against the lognormal : 7.
12. Malevergne Y, Pisarenko VF, Sornette D (2005) Empirical Distributions of Log-

Returns : between the Stretched Exponential and the Power Law ? Quantitative

Finance 5: 379–401.

13. Mitzenmacher M (2004) A Brief History of Generative Models for Power Law

and Lognormal Distributions. Internet Mathematics 1: 226–251.

14. Ginsburg A (2012). plfit. URL https://pypi.python.org/pypi/plfit.

powerlaw

PLOS ONE | www.plosone.org 11 January 2014 | Volume 9 | Issue 1 | e85777

