BMM-0271: Microbiologia básica

Genética de procariotos

Robson Francisco de Souza. Ph.D robfsouza@gmail.com LEEP: Laboratório de Estrutura e Evolução de Proteínas ICB/USP – 2016

Tópicos

- Origens da diversidade genética
 - Mutação
 - Tranferência lateral de genes
 - Transformação
 - Transdução
 - Conjugação

Composição dos ácidos nucléicos

Bases moleculares da genética Estrutura do DNA

Cromossomos de procariotos

1500 bases perto da origem de replicação Cromossomo de Escherichia coli str. K-12 substr. MG1655

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCTCTGTGTGGATTAAAAAAAGAGTGTCT GATAGCAGCTTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAATTTTATTGACTTAGGTC ACATCCATGAAACGCATTAGCACCACCATTACCACCATCACCATTACCACAGGTAACG GTGCGGGCTGACGCGTACAGGAAACACAGAAAAAAGCCCGCACCTGACAGTGCGGGCTTTT TTTTTCGACCAAAGGTAACGAGGTAACAACCATGCGAGTGTTGAAGTTCGGCGGTACATCA TGAAAAAACCATTAGCGGCCAGGATGCTTTACCCAATATCAGCGATGCCGAACGTATTTTT GCCGAACTTTTGACGGGACTCGCCGCCGCCCAGCCGGGGTTCCCGCTGGCGCAATTGAAAA CTTTCGTCGATCAGGAATTTGCCCAAATAAAACATGTCCTGCATGGCATTAGTTTGTTGGG GCAGTGCCCGGATAGCATCAACGCTGCGCTGATTTGCCGTGGCGAGAAAATGTCGATCGCC ATTATGGCCGGCGTATTAGAAGCGCGCGCGCGCACAACGTTACTGTTATCGATCCGGTCGAAA AACTGCTGGCAGTGGGGGCATTACCTCGAATCTACCGTCGATATTGCTGAGTCCACCCGCCG TATTGCGGCAAGCCGCATTCCGGCTGATCACATGGTGCTGATGGCAGGTTTCACCGCCGGT AATGAAAAAGGCGAACTGGTGGTGCTTGGACGCAACGGTTCCGACTACTCTGCTGCGGTGC CTGCGACCCGCGTCAGGTGCCCGATGCGAGGTTGTTGAAGTCGATGTCCTACCAGGAAGCG ATGGAGCTTTCCTACTTCGGCGCTAAAGTTCTTCACCCCCGCACCATTACCCCCCATCGCCC AGTTCCAGATCCCTTGCCTGATTAAAAATACCGGAAATCCTCAAGCACCAGGTACGCTCAT TGGTGCCAGCCGTGATGAAGACGAATTACCGGTCAAGGGCATTTCCAATCTGAATAACATG TTGCAGCGATGTCACGCGCCCGTATTTCCGTGGTGCTGATTACGCAATCATCTTCCGAATA CAGCATCAGTTTCTGCGTTCCACAAAGCGACTGTGTGCGAGCTGAACGGGCAATGCAGGAA GAGTTCTACCTGGAACTGAAAGAAGGCTTACTGGAGCCGCTGGCAGTGACGGAACGGCTGG CCATTATCTCGGTGGTAGGTGATGGTATGCGCACCTTGCGTGGGATCTCGGCGAAATTCTT TGCCGCACTGGCCCGCCGCCAATATCAACATTGTCGCCATTGCTCAGGGATCTTCTGAACGC TCAATCTCTGTCGTGGTAAATAACGATGATGCGACCACTGGCGTGCGCGTTACTCATCAGA TGCTGTTCAATACCGATCAGGTTATCGAAGTGTTTGTGATTGGCGTCGGTGGCGTTGGCGG CGTGTCTGCGGTGTTGCCAACTCGAAGGCTCTGCTCACCAATGTACATGGCCTTAATCTGG AAAACTGGCAGGAAGAACTGGCGCAAGCCAAAGAGCCGTTTAATCTCGGGCGC

Genoma: tipos de moléculas

Organismo	Elemento	Ácido nucléico	Descrição
Procarioto	Cromosomo	DNA dupla fita	A maioria é circular, muito longo
Eucarioto	Cromosomo	DNA dupla fita	Maioria linear, extremamente longo
Todos	Plasmídeo*	DNA dupla fita	Relativamente curto, linear ou circular
Mitocondria ou cloroplasto	Genoma	DNA dupla fita	Pequeno ou médio, geralmente circular
Vírus	Genoma	DNA ou RNA, fita dupla ou simples	Relativamente curto, circular ou linear

* Plasmídeos são muito raros em eucariotos

Cromossomos

- Codificam genes essenciais para o organismo
- Codificam os genes necessários para replicação e segregação

Plasmídeos

- Usam as polimerases do cromosomo
- Controlam seu número na célula
- Codificam genes para segregação

Gene Map of the *Mycoplasma pneumoniae* Genome

Genomas completos: exemplos

Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a. **BMC Genomics** (2006) 7:173

Mutação

<u>Definição</u>

Mutação é uma alteração na sequência de bases de um gene que não altera a composição química do DNA e que, pelo menos em <u>princípio</u>, ser transmitida aos descendentes (hereditária).

- Difere dos danos no DNA, que por impedirem a replicação, não podem ser transmitidos
- Muitas das mutações, porém, surgem a partir do reparo de danos no DNA corrigidos por mecanismos de reparo propensos a erro

Transição							
Purina – Purina	Pirimidina – Pirimidina						
A → G	С 🗲 Т						
G ➔ A	т → с						
Transversão							
Purina – Pirimidina	Pirimidina - Purina						
A → T	Т 🇲 А						
A → C	T 🇲 G						
G → T	C → A						
G → C	C → G						

Mutações pontuais correspondem à **troca de uma única base no genoma** São também conhecidas como polimorfirmos de um único nucleotídeo (SNPs)

Mutagênese e Danos no DNA

- Mutações espontâneas
 - Causadas por erros durante a replicação
 - Muito raras
- Mutações induzidas
 - Provocadas por agentes químicos ou físicos externos à célula
 - Muito frequêntes quando há exposição ao agente mutagênico

A replicação não pode continuar na presença de erros: a solução é o reparo de DNA

Agentes químicos mutagênicos

Análogos de bases						
5-Bromouracil	Incorpor	rada c	omo timina; par com guanina (G)	4	AT => GC, às vezes GC => AT	
2-Aminopurine Incorporad			omo adenina, par com citosina (C)	1	AT => GC, às vezes GC => AT	
Compostos que reagem com o DNA						
Ácido nitroso (HNO2)		Dean	Deamina adenina e citosina		AT => GC e GC => AT	
Hydroxylamine (NH2OH)		Reag	Reage com citosinas d		GC => AT	
Agentes alquilant	tes					
<u>Monofunctional</u> : etil-metanosulfonato		Adio pare	Adiciona grupos metil à guanina; pareamento com timina		GC => AT	
<u>Bifunctionais</u> : mitomicina, nitrosoguanidina		Liga regi	Ligações cruzadas entre as fitas do DNA; região danificada removida pela DNase		Mutações de ponto e deleções	
Corantes intercalantes						
Acridinas, brometo de etídeo			Inserem-se entre dois pares de bases		Microinserções ou microdeleções	
Radiação						
Ultravioleta		Dír	Dímeros de pirimidinas		Reparo com erro ou deleção	
Radiação ionizante (raios-X)		Dír	Dímeros de pirimidinas		Reparo com erro ou deleção	

Síntese de Proteínas: tradução

Tipos de mutações

O efeito das mutações sobre regiões codificantes será determinado pela fase de leitura e pela estrutura do código genético

	Second Position										
			U	С		А		G			_
		ບບບ ບບc	Phe / F	UCU UCC	sor	UAU UAC	Tyr/Y	UGU UGC	Cys / C	U C	
		UUA	Lou / L	UCA	UAA	STOP	UGA	STOP	Α		
		UUG	Leu/L	UCG		UAG	STOP	UGG	Trp / W	G	
		CUU		CCU		CAU	His / H	CGU	Arg / R	U	
6		CUC	JC Leu/L JA	CCC	Pro / P	CAC		CGC		С	
5 `		CUA		CCA	FI07 F	CAA Gln / Q CAG	Gln / O	CGA		Α	
		CUG		CCG			CGG		G		
2		AUU	AUU AUC Ile/I AUA	ACU		AAU	Asn / N	AGU	Ser / S	U	lso
Ë,		AUC		ACC	Thr / T	AAC		AGC		С	9
ſ		AUA		ACA	, .	AAA	lvs / K	AGA	Arg / R	Α	
		AUG	Met / M	ACG		AAG	Ly37 K	AGG	Aig/ ii	G	
	GUU GUC GUA GUG	GCU		GAU	Asn / D	GGU		U			
e		GUC	Val / V	GCC	Ala / A	GAC	Asp / D	GGC	Gly / G	С	
		GUA	var/v	GCA		GAA	AA Glu / E AG	GGA	51,75	Α	
		GUG		GCG		GAG		GGG		G	

Second Desition

Inserção ou Deleção de Uma base Reading DNA mRNA frame ...GTGCCCTGTT... ...GUG CCC UGU U... +1CACGGGACAA... Transcription Insertion off of light green strands Codons GTGCCTGTT ...GUG CCU GUUCACGGACAA... Normal protein Deletion GTGCTGTT... ...GUG CUG UU... CACGACAA...

Recombinação homóloga

Transferência Horizontal de DNA

Transformação Transdução*

Conjugação

Transformação

- Em geral, são transferidos fragmentos de DNA pequenos
- Proteínas especializadas protegem o DNA da degradação intracelular

Recombinação necessária para herança do DNA capturado

Competência na Transformação

- Bactérias naturalmente transformáveis são chamadas competentes. Exemplos:
 - Bacillus: 20% das células se tornam competentes e permanecem por por horas
 - Streptococcus durante o ciclo de crescimento 100% ficam competentes – período curto de tempo
- Células não compenetes
 - Tratamentos físicos e químicos permitem induzir a permeabilidade da parede celular
 - Cloreto de Cálcio
 - Eletroporação: aplicação de pulsos elétricos curtos de alta voltagem

Transdução

Ciclo lítico e Via lisogênica

Transdução Generalizada

Uma pequena parcela das particulas serão transdutoras, ou seja, carregarão um fragmento do DNA genômico ao invés de uma cópia do vírus!

Transdução Específica

Conjugação

- Conjugação: Transferência genética entre duas células que envolve contato
- Envolve: célula doadora e receptora
- Mecanismo de transferência pode exibir diferenças dependendo do plasmídeo envolvido
- A maioria das bactérias Gram-negativas usam um mecanismo semelhante ao do plasmídeo F
- Normalmente, o plasmídeo é replicado por polimerases celulares e segregado por proteínas próprias
- Pode também ser integrado no cromossomo da célula hospedeira por intermédio de sequências de inserção (IS)

Plasmídeo F

Genes envolvidos na transferência do plasmídio, como proteínas envolvidas na biossíntese do pili F

Genes envolvidos na formação do par conjugante

Diferentes plasmídeos podem codificar proteínas diferentes que vão ter o pili ligeiramente diferente

Origem de transferência

Pilus with attached phage virions replicação IS3 Tn1000 99.2kbp/0 tra region IS3 IS2 F plasmid - 75 kbp 25 kbp ori IS 50 kbp Recombinar com sequências equivalentes na célula hospedeira gerando diferentes linhagens Hfr oriV

Transferência do DNA Plasmidial por Conjugação

- Processo que leva 5min (plasmídeo de 100 kbp)
- O Plasmídeo consegue se dissiminar rapidamente na população e é, portanto, **um agente infeccioso**

Nota: a célula receptora pode perder o plasmídeo

Processo de integração do plasmídeo F (Hfr) Recombinação Sítio específica

Transferência de alguns genes cromossomais por conjugação

- Hfr: Alta frequência de recombinação
- Plasmidio está integrado
- Transferir grandes quantidades de genes
- Receptora não será Hfr : apenas uma parte do plasmidio é transferida

O fragmento transferido é integrado na célula aceptora por recombinação da parte homóloga (verde)

Origens da diversidade genética em bactérias

Resistência cromossomal

Mutações cromossômicas

Resistência extra-cromossomal

Transferência lateral

Low diversity

High diversity

* As frequency per cell per generation

Vocabulário de genética bacteriana

Termo		Definição			
Linhagan	Selvagem	Linhagem de referência, isolada e mantida em laboratório			
Linnagem	Mutante	Fenótipo diferente do selvagem parental			
Marcadores	Um ou mais genes que carregam mutações que podem ser monitoradas por produzir fenótipos distintos do selvagem				

Nomenclatura das mutações / mutantes						
Tipo de alteração	Exemplo	Categoria	Definição			
Selvagem	wt	selvagem	referência			
	His⁺	selvagem	Posso fazer minha própria histidina			
Fonotínicos	His-	auxotrófico	Tenho que comer histidina pra viver			
Fenotipicas	Lac+	selvagem	Posso comer lactose			
	Lac-		Não como lactose			
Constinions	∆hisC1	auxotrófico	His- porque o gene hisC1 não funciona			
Genoupicas	∆hisC2	auxotrófico	His- porque o gene hisC2 não funciona			

Isolamento de Mutantes

Mutante Selecionável

Disco central com antibiótico

Mutações selecionáveis

- Mutações com efeito direto na capacidade de sobrevivência do organismo nas condições testadas
- Exemplos: resistência a antibióticos, ganho/perda da capacidade de sintetizar metabólitos e nutrientes
- Organismos não-resistentes podem ser selecionado por meio com antibiótico

Mutante Não-Selecionável

Aspergillus nidulans: pigmentação

Mutações não-selecionáveis

- Produzem efeito fenotípico de fácil observação mas sem valor para a sobrevida do organismo
- Isolamento só pode ser feito pela observação visual

Referências

- Microbiologia (Tortora, 11a. Edição)
 Capítulo 8: Genética microbiana
- Microbiologia de Brock (12a. Edição)
 Capítulo 6: Biologia Molecular de Bactérias
 Unidade 10: Genética de bactérias e árqueas

Perguntas

- O que são ORFs (fases abertas de leitura)?
- O que são operons?
- O que é genoma?
- A síntese de nucleotídeos ocorre sempre em um único sentido, seja síntese de DNA ou RNA. Que sentido é esse? Mostre as posições no anel da ribose.

Perguntas

- Você tem Hfr, His⁺ e Lac⁺ e uma célula F⁻ resistente a canamicina. Qual fenótipo você espera observar para a célula conjugada? A célula F⁻ se transforma em F⁺ e Hfr?
- Mutação de sentido trocado pode causar que problemas para a célula?
- Uma célula F⁺ com resistência aos antibióticos Amp, Str e Gen, torna a célula receptora resistente a quais antibióticos? O processo de conjugação pode ser um problema para a saúde pública, em qual aspecto?

Perguntas

 Na transdução especializada, a célula receptora pode em alguns casos replicar o DNA da célula doadora? E no caso da transdução generalizada?

 O que é competência no processo de transformação? Os resultados abaixo foram obtidos a partir de dois experimentos de transferência de resistência a antibióticos por conjugação:

MC MC + Antib. A MC + Antib. B MC + Antib. A + Antib. B MC + Antib. A MC + Antib. A + Antib. B MC MC + Antib. B

- a. Em qual dos experimentos a conjugação bacteriana ocorreu com sucesso? Identifique a célula doadora e a receptora. Justifique suas respostas.
- b. Quais características a célula Receptora, doadora e conjugada possuem: A^{r,} B^r e Lac⁺